Patents by Inventor Shih-Chieh Wu
Shih-Chieh Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250120122Abstract: One aspect of the present disclosure pertains to a semiconductor device. The semiconductor device includes a semiconductor substrate and a transistor formed over the semiconductor substrate. The transistor includes a first source/drain (S/D) feature, a second S/D feature, a channel region interposed between the first and second S/D features, and a gate stack engaging the channel region. The semiconductor device includes a first S/D contact landing on a top surface of the first S/D feature, a second S/D contact landing on a top surface of the second S/D feature, and a dielectric plug penetrating through the semiconductor substrate and landing on a bottom surface of the first S/D feature. The dielectric plug spans a width equal to or smaller than a width of the first S/D feature.Type: ApplicationFiled: October 5, 2023Publication date: April 10, 2025Inventors: Chen-Ming Lee, Shih-Chieh Wu, Po-Yu Huang, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20250081523Abstract: A semiconductor die and the method of forming the same are provided. The semiconductor die includes a first interconnect structure, a second interconnect structure including a conductive feature, and a device layer between the first interconnect structure and the second interconnect structure. The device layer includes a semiconductor fin, a first gate structure on the semiconductor fin, a source/drain region adjacent the first gate structure, and a shared contact extending through the semiconductor fin to be electrically connected to the source/drain region and the first gate structure. The conductive feature contacts the shared contact.Type: ApplicationFiled: August 29, 2023Publication date: March 6, 2025Inventors: Chen-Ming Lee, Shih-Chieh Wu, Po-Yu Huang, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20250006557Abstract: An exemplary device includes a frontside power rail disposed over a frontside of a substrate, a backside power rail disposed over a backside of the substrate, an epitaxial source/drain structure disposed between the frontside power rail and the backside power rail. The epitaxial source/drain structure is connected to the frontside power rail by a frontside source/drain contact. The epitaxial source/drain structure is connected to the backside power rail by a backside source/drain via. The backside source/drain via is disposed in a substrate, and a dielectric layer is disposed between the substrate and the backside power rail. The backside source/drain via extends through the dielectric layer and the substrate.Type: ApplicationFiled: November 30, 2023Publication date: January 2, 2025Inventors: Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Mei-Yun Wang
-
Publication number: 20240387626Abstract: A semiconductor device structure includes nanostructures formed over a substrate. The structure also includes a gate structure formed over and around the nanostructures. The structure also includes a spacer layer formed over a sidewall of the gate structure over the nanostructures. The structure also includes a source/drain epitaxial structure formed adjacent to the spacer layer. The structure also includes a contact structure formed over the source/drain epitaxial structure with an air spacer formed between the spacer layer and the contact structure.Type: ApplicationFiled: July 26, 2024Publication date: November 21, 2024Inventors: Kai-Hsuan Lee, Shih-Che Lin, Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20240371955Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain region formed in a semiconductor substrate, a source/drain contact structure formed over the source/drain region, and a silicide region formed between the source/drain region and the source/drain contact structure. The semiconductor device structure also includes a first insulating spacer surrounding and in direct contact with the source/drain contact structure and a second insulating spacer and a third insulating spacer respectively formed on two opposite sidewalls of the source/drain contact structure and in direct contact with an outer edge of the first insulating spacer. A first sidewall of the second insulating spacer and a second sidewall of the third insulating spacer are respectively aligned to two opposite side edges of the source/drain region.Type: ApplicationFiled: July 15, 2024Publication date: November 7, 2024Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
-
Publication number: 20240363427Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
-
Publication number: 20240355708Abstract: One aspect of the present disclosure pertains to a method of forming a semiconductor device. The method includes forming a gate stack over a channel region and forming a first source/drain (S/D) trench adjacent the channel region and extending into the substrate below a top surface of an isolation structure. The method includes forming a first epitaxial S/D feature in the first S/D trench and forming a first frontside metal contact over the first epitaxial S/D feature. The method further includes forming a first backside trench that exposes a bottom surface of the first epitaxial S/D feature and forming a first backside conductive feature in the first backside trench and on the exposed bottom surface of the first epitaxial S/D feature. A top surface of the first backside conductive feature is under a bottommost surface of the gate stack.Type: ApplicationFiled: April 21, 2023Publication date: October 24, 2024Inventors: Po-Yu HUANG, Shih-Chieh WU, Chen-Ming LEE, I-Wen WU, Fu-Kai YANG, Mei-Yun WANG
-
Patent number: 12080769Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain region formed in a semiconductor substrate, a source/drain contact structure formed over the source/drain region, and a gate electrode layer formed adjacent to the source/drain contact structure. The semiconductor device structure also includes a first spacer and a second spacer laterally and successively arranged from the sidewall of the gate electrode layer to the sidewall of the source/drain contact structure. The semiconductor device structure further includes a silicide region formed in the source/drain region. The top width of the silicide region is greater than the bottom width of the source/drain contact structure and less than the top width of the source/drain region.Type: GrantFiled: February 15, 2022Date of Patent: September 3, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Kai-Hsuan Lee, Shih-Che Lin, Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20240279418Abstract: A thermoplastic polyurethane foam material, a midsole of athletic shoe and a manufacturing method of a foam material are provided. The thermoplastic polyurethane foam material includes a diphenylmethane diisocyanate, a polytetramethylene ether glycol, a 1,4-butanediol, a nucleating agent and a thinning agent. The thinning agent has a structure represented by formula (I), of which each symbol is defined in the specification.Type: ApplicationFiled: January 31, 2024Publication date: August 22, 2024Inventors: Shih-Wei LIU, Jing-Zhong HWANG, Pin-Jung CHEN, Chang-Yen CHANG, Shih-Chieh WU
-
Patent number: 12068201Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.Type: GrantFiled: June 15, 2023Date of Patent: August 20, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
-
Publication number: 20240075346Abstract: An exercise monitoring method, an exercise monitoring device, and a computer-readable storage medium are provided. The method includes the following: obtaining an exercise course input by a user; detecting a reference respiratory pattern of the user performing the exercise course through a wearable device within a reference time interval; detecting a first respiratory pattern of the user performing the exercise course through the wearable device within a first time interval; and providing a first exercise adjustment suggestion based on a first comparison result between the first respiratory pattern and the reference respiratory pattern.Type: ApplicationFiled: September 1, 2023Publication date: March 7, 2024Applicant: BOMDIC INC.Inventors: Yao Shiao, Shih-Chieh Wu
-
Publication number: 20230326804Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.Type: ApplicationFiled: June 15, 2023Publication date: October 12, 2023Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
-
Publication number: 20230268411Abstract: A semiconductor structure includes a substrate, nanostructures over the substrate, and a gate structure wrapping around the nanostructures. The gate structure includes a gate dielectric layer and a gate electrode wrapping around the gate dielectric layer. The semiconductor structure further includes a source/drain feature in contact with the nanostructures, a contact etch stop layer over the source/drain feature, and a seal layer over the air spacer and the gate structure, and on a sidewall of the contact etch stop layer. The contact etch stop layer is separated from the gate structure by an air spacer.Type: ApplicationFiled: February 23, 2022Publication date: August 24, 2023Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
-
Publication number: 20230261068Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain region formed in a semiconductor substrate, a source/drain contact structure formed over the source/drain region, and a gate electrode layer formed adjacent to the source/drain contact structure. The semiconductor device structure also includes a first spacer and a second spacer laterally and successively arranged from the sidewall of the gate electrode layer to the sidewall of the source/drain contact structure. The semiconductor device structure further includes a silicide region formed in the source/drain region. The top width of the silicide region is greater than the bottom width of the source/drain contact structure and less than the top width of the source/drain region.Type: ApplicationFiled: February 15, 2022Publication date: August 17, 2023Inventors: Kai-Hsuan LEE, Shih-Che LIN, Po-Yu HUANG, Shih-Chieh WU, I-Wen WU, Chen-Ming LEE, Fu-Kai YANG, Mei-Yun WANG
-
Patent number: 11721590Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.Type: GrantFiled: July 12, 2022Date of Patent: August 8, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
-
Publication number: 20230048829Abstract: Semiconductor structures and methods are provided. An exemplary method according to the present disclosure includes receiving a fin-shaped structure comprising a first channel region and a second channel region, a first and a second dummy gate structures disposed over the first and the second channel regions, respectively. The method also includes removing a portion of the first dummy gate structure, a portion of the first channel region and a portion of the substrate under the first dummy gate structure to form a trench, forming a hybrid dielectric feature in the trench, removing a portion of the hybrid dielectric feature to form an air gap, sealing the air gap, and replacing the second dummy gate structure with a gate stack after sealing the air gap.Type: ApplicationFiled: August 13, 2021Publication date: February 16, 2023Inventors: Kai-Hsuan Lee, Shih-Che Lin, Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20230033570Abstract: A semiconductor device structure and a method for forming a semiconductor device structure are provided. The semiconductor device structure includes a metal gate stack over a substrate and an epitaxial structure over the substrate. The semiconductor device structure also includes a conductive contact electrically connected to the epitaxial structure. A topmost surface of the metal gate stack is vertically disposed between a topmost surface of the conductive contact and a bottommost surface of the conductive contact. The semiconductor device structure further includes a first conductive via electrically connected to the metal gate stack. The topmost surface of the conductive contact is vertically disposed between a topmost surface of the first conductive via and a bottommost surface of the first conductive via. In addition, the semiconductor device structure includes a second conductive via electrically connected to the conductive contact.Type: ApplicationFiled: July 30, 2021Publication date: February 2, 2023Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shih-Chieh WU, Pang-Chi Wu, Wang-Jung Hsueh, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Yi-Chun Chang, Yuan-Tien Tu
-
Publication number: 20220367623Abstract: A semiconductor device structure includes nanostructures formed over a substrate. The structure also includes a gate structure formed over and around the nanostructures. The structure also includes a spacer layer formed over a sidewall of the gate structure over the nanostructures. The structure also includes a source/drain epitaxial structure formed adjacent to the spacer layer. The structure also includes a contact structure formed over the source/drain epitaxial structure with an air spacer formed between the spacer layer and the contact structure.Type: ApplicationFiled: November 19, 2021Publication date: November 17, 2022Inventors: Kai-Hsuan Lee, Shih-Che Lin, Po-Yu Huang, Shih-Chieh Wu, I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
-
Publication number: 20220344215Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.Type: ApplicationFiled: July 12, 2022Publication date: October 27, 2022Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young
-
Patent number: 11393724Abstract: In an embodiment, a method includes: forming a first fin extending from a substrate; forming a second fin extending from the substrate, the second fin being spaced apart from the first fin by a first distance; forming a metal gate stack over the first fin and the second fin; depositing a first inter-layer dielectric over the metal gate stack; and forming a gate contact extending through the first inter-layer dielectric to physically contact the metal gate stack, the gate contact being laterally disposed between the first fin and the second fin, the gate contact being spaced apart from the first fin by a second distance, where the second distance is less than a second predetermined threshold when the first distance is greater than or equal to a first predetermined threshold.Type: GrantFiled: February 8, 2021Date of Patent: July 19, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shih-Chieh Wu, Pang-Chi Wu, Kuo-Yi Chao, Mei-Yun Wang, Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young