Patents by Inventor Shih-Ming Chang

Shih-Ming Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150147887
    Abstract: The present disclosure provides a method for forming patterns in a semiconductor device. In accordance with some embodiments, the method includes providing a substrate and a patterning-target layer over the substrate; forming one or more mandrel patterns over the patterning-target layer; forming an opening in a resist layer by removing a first mandrel pattern and removing a portion of the resist layer that covers the first mandrel pattern; forming spacers adjacent to sidewalls of a second mandrel pattern; removing the second mandrel pattern to expose the spacers; forming a patch pattern over the spacers and aligned with the opening; etching the patterning-target layer using the patch pattern and the spacers as mask elements to form final patterns; and removing the patch pattern and the spacers to expose the final patterns.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Gun Liu, Chung-Te Lin, Ming-Feng Shieh, Tsai-Sheng Gau, Shih-Ming Chang
  • Patent number: 9040433
    Abstract: One or more techniques or systems for forming a line end space structure are provided herein. In some embodiments, a first patterned second hard mask (HM) region is formed above a first HM region. Additionally, at least some of the first patterned second HM region is removed. In some embodiments, a first sacrificial HM region and a second sacrificial HM region are formed above at least one of the first patterned second HM region or the first HM region. Photo resist (PR) is patterned above the second sacrificial HM region, and a spacer region is deposited above the patterned PR and second sacrificial HM region. In some embodiments, at least some of at least one of the spacer region, the PR, or the respective sacrificial HMs is removed. In this way, a line end space structure associated with an end-to-end space is formed.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chia-Ying Lee, Jyu-Horng Shieh, Ming-Feng Shieh, Shih-Ming Chang, Chih-Ming Lai, Ken-Hsien Hsieh, Ru-Gun Liu
  • Publication number: 20150128098
    Abstract: A method of lithographic defect detection and repair is disclosed. In an exemplary embodiment, the method of patterning a workpiece comprises receiving a mask for patterning a workpiece. The mask is inspected for defects, and a mask defect is identified that is repairable in the workpiece. The workpiece is lithographically exposed using the mask, and a defect is repaired within the workpiece based on the identified mask defect. The method may further comprise comparing defects across the workpiece to determine repeating defects and determining a spacing between repeating defects. A distance between a first focal point and a second focal point of a lithographic system may be configured to correspond to the spacing between repeating defects. Thus, a first repeating defect and a second repeating defect may be repaired concurrently.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Chih-Ming Lai, Hung-Chang Hsieh
  • Patent number: 9026956
    Abstract: Some embodiments of the present disclosure relate to a method to simulate patterning of a layout. The method comprises simulating formation of a layout pattern under a first lithography condition. The first lithography condition comprises a set of parameters, wherein a value of each parameter is defined by a corresponding process model. The method further comprises randomly varying the value of each parameter of the first lithography condition within a range of values defined by the corresponding process model of the parameter, to create a second lithography condition. Formation of a layout pattern is then re-simulated under the second lithography condition. Random variation of the value of each parameter is repeated to create additional lithography conditions. And, each lithography condition is re-simulated until the value of each parameter has been substantially varied across a range of its respective process model.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Cheng Chang, Wei-Kuan Yu, Tsai-Ming Huang, Chin-Min Huang, Cherng-Shyan Tsay, Chien Wen Lai, Hua-Tai Lin, Shih-Ming Chang
  • Publication number: 20150116678
    Abstract: Disclosed is a lithography system. The lithography system includes a radiation source to provide radiation energy for lithography exposure; a substrate stage configured to secure a substrate; an imaging lens module configured to direct the radiation energy onto the substrate; at least one sensor configured to detect a radiation signal directed from the substrate; and a pattern extraction module coupled with the at least one sensor and designed to extract a pattern of the substrate based on the radiation signal.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Wen-Chuan Wang
  • Publication number: 20150106771
    Abstract: Some embodiments of the present disclosure relate to a method to simulate patterning of a layout. The method comprises simulating formation of a layout pattern under a first lithography condition. The first lithography condition comprises a set of parameters, wherein a value of each parameter is defined by a corresponding process model. The method further comprises randomly varying the value of each parameter of the first lithography condition within a range of values defined by the corresponding process model of the parameter, to create a second lithography condition. Formation of a layout pattern is then re-simulated under the second lithography condition. Random variation of the value of each parameter is repeated to create additional lithography conditions. And, each lithography condition is re-simulated until the value of each parameter has been substantially varied across a range of its respective process model.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Inventors: Chia-Cheng Chang, Wei-Kuan Yu, Tsai-Ming Huang, Chin-Min Huang, Cherng-Shyan Tsay, Chien Wen Lai, Hua-Tai Lin, Shih-Ming Chang
  • Publication number: 20150089458
    Abstract: The present disclosure provides methods and systems for mitigating print-out defects that result during semiconductor simulation and/or fabrication. One of the methods disclosed herein includes steps of receiving a first desired sub-layout and a second desired sub-layout and of optimizing the first desired sub-layout and the second desired sub-layout to generate a first optimized sub-layout and a second optimized sub-layout. The method further includes simulating the first optimized sub-layout and the second optimized sub-layout and of identifying one or more print-out defects in the simulated first optimized sub-layout and the simulated second optimized sub-layout. By comparing the simulated first optimized sub-layout and the simulated second optimized sub-layout it may be determined whether or not print-out defects in the simulated second optimized sub-layout are covered by the first desired sub-layout such that the first optimized sub-layout may be used to pattern material layers.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Inventor: Shih-Ming Chang
  • Publication number: 20150079774
    Abstract: Embodiments of the present disclosure include self-alignment of two or more layers and methods of forming the same. An embodiment is a method for forming a semiconductor device including forming at least two gates over a substrate, forming at least two alignment structures over the at least two gates, forming spacers on the at least two alignment structures, and forming a first opening between a pair of the at least two alignment structures, the first opening extending a first distance from a top surface of the substrate. The method further includes filling the first opening with a first conductive material, forming a second opening between the spacers of at least one of the at least two alignment structures, the second opening extending a second distance from the top surface of the substrate, and filling the second opening with a second conductive material.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ru-Gun Liu, Ken-Hsien Hsieh, Ming-Feng Shieh, Chih-Ming Lai, Tsai-Sheng Gau
  • Publication number: 20150070665
    Abstract: A system and method is provided for providing a thermal distribution on a workpiece during a lithographic process. The system provides a source of lithographic energy to workpiece, such as a workpiece having a lithographic film formed thereover. A workpiece support having a plurality of thermal devices embedded therein is configured to support the workpiece concurrent to an exposure of the workpiece to the lithographic energy. A controller individually controls a temperature of each of the plurality of thermal devices, therein controlling a specified temperature distribution across the workpiece associated with the exposure of the workpiece to the lithographic energy. Controlling the temperature of the thermal devices can be based on a model, a measured temperature of the workpiece, and/or a prediction of a temperature at one or more locations on the workpiece.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Shih-Ming Chang
  • Patent number: 8962464
    Abstract: Embodiments of the present disclosure include self-alignment of two or more layers and methods of forming the same. An embodiment is a method for forming a semiconductor device including forming at least two gates over a substrate, forming at least two alignment structures over the at least two gates, forming spacers on the at least two alignment structures, and forming a first opening between a pair of the at least two alignment structures, the first opening extending a first distance from a top surface of the substrate. The method further includes filling the first opening with a first conductive material, forming a second opening between the spacers of at least one of the at least two alignment structures, the second opening extending a second distance from the top surface of the substrate, and filling the second opening with a second conductive material.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ru-Gun Liu, Ken-Hsien Hsieh, Ming-Feng Shieh, Chih-Ming Lai, Tsai-Sheng Gau
  • Publication number: 20140377962
    Abstract: One or more techniques or systems for forming a line end space structure are provided herein. In some embodiments, a first patterned second hard mask (HM) region is formed above a first HM region. Additionally, at least some of the first patterned second HM region is removed. In some embodiments, a first sacrificial HM region and a second sacrificial HM region are formed above at least one of the first patterned second HM region or the first HM region. Photo resist (PR) is patterned above the second sacrificial HM region, and a spacer region is deposited above the patterned PR and second sacrificial HM region. In some embodiments, at least some of at least one of the spacer region, the PR, or the respective sacrificial HMs is removed. In this way, a line end space structure associated with an end-to-end space is formed.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Chia-Ying Lee, Jyu-Horng Shieh, Ming-Feng Shieh, Shih-Ming Chang, Chih-Ming Lai, Ken-Hsien Hsieh, Ru-Gun Liu
  • Patent number: 8907497
    Abstract: A device and method for fabricating a device is disclosed. An exemplary device includes a first conductive layer disposed over a substrate, the first conductive layer including a first plurality of conductive lines extending in a first direction. The device further includes a second conductive layer disposed over the first conductive layer, the second conductive layer including a second plurality of conductive lines extending in a second direction. The device further includes a self-aligned interconnect formed at an interface where a first conductive line of the first plurality of conductive lines is in electrical contact with a first conductive line of the second plurality of conductive lines. The device further includes a blocking portion interposed between a second conductive line of the first plurality of conductive lines and a second conductive line of the second plurality of conductive lines.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh, Tsong-Hua Ou, Ru-Gun Liu, Fang-Yu Fan, Yuan-Te Hou
  • Patent number: 8888948
    Abstract: An apparatus for controlling a plasma etching process includes plasma control structure that can vary a size of a plasma flow passage, vary a speed of plasma flowing through the plasma flow passage, vary plasma concentration flowing through the plasma flow passage, or a combination thereof.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Chi-Lun Lu
  • Publication number: 20140322910
    Abstract: The present disclosure provides a method for forming a semiconductor device. The semiconductor device includes a first conductive line disposed over a substrate. The first conductive line is located in a first interconnect layer and extends along a first direction. The semiconductor device includes a second conductive line and a third conductive line each extending along a second direction different from the first direction. The second and third conductive lines are located in a second interconnect layer that is different from the first interconnect layer. The second and third conductive lines are separated by a gap that is located over or below the first conductive line. The semiconductor device includes a fourth conductive line electrically coupling the second and third conductive lines together. The fourth conductive line is located in a third interconnect layer that is different from the first interconnect layer and the second interconnect layer.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 30, 2014
    Inventors: Yu-Po Tang, Shih-Ming Chang, Ken-Hsien Hsieh, Ru-Gun Liu
  • Publication number: 20140264760
    Abstract: A method for feature pattern modification includes extracting both a main pattern and a cut pattern from a design pattern, the main pattern being laid out under a set of process guidelines that improve the process window during formation of the main pattern, and modifying at least one of: the main pattern and the cut pattern if either feature pattern is in violation of a layout rule.
    Type: Application
    Filed: October 21, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Kuei-Liang Lu
  • Publication number: 20140264899
    Abstract: A method for pattern modification for making an integrated circuit layout is disclosed. The method includes determining a feature within a pattern of the integrated circuit layout that can be rearranged; determining a range in which the feature can be repositioned; for the feature, determining a preferred position function that exhibits extreme values at preferable positions; and rearranging the position of the feature within the range to match an extreme value of the function.
    Type: Application
    Filed: October 21, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ming Chang, Ken-Hsien Hsieh
  • Publication number: 20140273442
    Abstract: A method of forming a target pattern includes forming a first material layer on a substrate; performing a first patterning process using a first layout to form a first plurality of trenches in the first material layer; performing a second patterning process using a second layout to form a second plurality of trenches in the first material layer; forming spacer features on sidewalls of both the first plurality of trenches and the second plurality of trenches, the spacer features having a thickness; removing the first material layer; etching the substrate using the spacer features as an etch mask; and thereafter removing the spacer features. The target pattern is to be formed with the first layout and the second layout.
    Type: Application
    Filed: November 15, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Gun Liu, Shih-Ming Chang, Ken-Hsien Hsieh, Ming-Feng Shieh, Chih-Ming Lai, Tsai-Sheng Gau, Chia-Ying Lee, Jyu-Horng Shieh, Chung-Ju Lee, Cheng-Hsiung Tsai, Tien-I Bao, Shau-Lin Shue
  • Publication number: 20140273456
    Abstract: A method of forming a target pattern includes forming a mandrel pattern on a substrate, the mandrel pattern having a line with a first dimension in a first direction and a second dimension in a second direction; forming a spacer around the mandrel pattern, the spacer having a first width; forming a cut pattern over the mandrel pattern and the spacer wherein the cut pattern partially overlaps the spacer on both sides of the line in the first direction; etching the mandrel pattern using the cut pattern as an etch mask, thereby defining a plurality of openings with sidewalls of the spacer, the cut pattern, and a portion of the mandrel pattern underneath the cut pattern; and reducing the first width of the spacer thereby to enlarge the plurality of openings.
    Type: Application
    Filed: June 6, 2013
    Publication date: September 18, 2014
    Inventors: Ming-Feng Shieh, Ru-Gun Liu, Tsai-Sheng Gau, Shih-Ming Chang
  • Publication number: 20140268074
    Abstract: The present disclosure provides a lithography system. The lithography system includes an exposing module configured to perform a lithography exposing process using a mask secured on a mask stage; and a cleaning module integrated in the exposing module and designed to clean at least one of the mask and the mask stage using an attraction mechanism.
    Type: Application
    Filed: January 30, 2014
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shang-Chieh Chien, Jeng-Horng Chen, Jui-Ching Wu, Chia-Chen Chen, Hung-Chang Hsieh, Chi-Lun Lu, Chia-Hao Yu, Shih-Ming Chang, Anthony Yen
  • Patent number: 8835323
    Abstract: A method of forming a target pattern includes forming a mandrel pattern on a substrate, the mandrel pattern having a line with a first dimension in a first direction and a second dimension in a second direction; forming a spacer around the mandrel pattern, the spacer having a first width; forming a cut pattern over the mandrel pattern and the spacer wherein the cut pattern partially overlaps the spacer on both sides of the line in the first direction; etching the mandrel pattern using the cut pattern as an etch mask, thereby defining a plurality of openings with sidewalls of the spacer, the cut pattern, and a portion of the mandrel pattern underneath the cut pattern; and reducing the first width of the spacer thereby to enlarge the plurality of openings.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Feng Shieh, Ru-Gun Liu, Tsai-Sheng Gau, Shih-Ming Chang