Patents by Inventor Shih Pei Chou

Shih Pei Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10978345
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: April 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Patent number: 10964746
    Abstract: Some embodiments of the present disclosure relate to a method in which a functional layer is formed over an upper semiconductor surface of a semiconductor substrate, and a capping layer is formed over the functional layer. A first etchant is used to form a recess through the capping layer and through the functional layer. The recess has a first depth and exposes a portion of the semiconductor substrate there through. A protective layer is formed along a lower surface and inner sidewalls of the recess. A second etchant is used to remove the protective layer from the lower surface of the recess and to extend the recess below the upper semiconductor surface to a second depth to form a deep trench. To prevent etching of the functional layer, the protective layer remains in place along the inner sidewalls of the recess while the second etchant is used.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hsien Chou, Shih Pei Chou, Chih-Yu Lai, Sheng-Chau Chen, Chih-Ta Chen, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20210091127
    Abstract: Various embodiments of the present disclosure are directed towards a pixel sensor including a dummy vertical transistor structure underlying a photodetector. The pixel sensor includes a substrate having a front-side surface opposite a back-side surface. The photodetector is disposed within the substrate. A deep trench isolation (DTI) structure extends from the back-side surface of the substrate to a first point below the back-side surface. The DTI structure wraps around an outer perimeter of the photodetector. The dummy vertical transistor structure is laterally spaced between inner sidewalls of the DTI structure. The dummy vertical transistor structure includes a dummy vertical gate electrode having a dummy conductive body and a dummy embedded conductive structure. The dummy embedded conductive structure extends from the front-side surface of the substrate to a second point vertically above the first point and the dummy conductive body extends along the front-side surface of the substrate.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Tsun-Kai Tsao, Jiech-Fun Lu, Shih-Pei Chou
  • Publication number: 20210066225
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor structure including a bond pad disposed within a semiconductor substrate. The semiconductor substrate has a back-side surface and a front-side surface opposite the back-side surface. An upper surface of the semiconductor substrate is vertically below the back-side surface. The bond pad extends through the semiconductor substrate. The bond pad includes a conductive body over the upper surface of the semiconductor substrate and conductive protrusions extending from above the upper surface to below the front-side surface of the semiconductor substrate. A vertical distance between a top surface of the bond pad and the back-side surface of the semiconductor substrate is less than a height of the conductive protrusions. A first bond pad isolation structure extends through the semiconductor substrate and laterally surrounds the conductive protrusions.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 4, 2021
    Inventors: Shih-Pei Chou, Jiech-Fun Lu
  • Publication number: 20210043593
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device structure including a bond pad isolation structure. A semiconductor substrate has a back-side surface and a front-side surface opposite the back-side surface. A bond pad extends through the semiconductor substrate. The bond pad isolation structure is disposed within the semiconductor substrate. The bond pad isolation structure extends from the front-side surface to the back-side surface of the semiconductor substrate and continuously extends around the bond pad.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 11, 2021
    Inventors: Sin-Yao Huang, Jeng-Shyan Lin, Shih-Pei Chou, Tzu-Hsuan Hsu
  • Patent number: 10872918
    Abstract: An optical isolation structure and a method for fabricating the same are provided. The optical isolation structure includes an epitaxial layer and a dielectric layer. The epitaxial layer and the dielectric layer are formed in a deep trench of a semiconductor substrate. The epitaxial layer covers a lower portion of sidewall of the trench, and the dielectric layer covers an upper portion of the sidewall of the trench. In the method for fabricating the optical isolation structure, at first, shallow trenches are formed in the semiconductor substrate. Then, the dielectric layer is formed in the shallow trenches. Thereafter, deep trenches are formed passing through the dielectric layers. Then, the epitaxial layer is formed in the deep trenches.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Han Huang, Tzu-Hsiang Chen, Shih-Pei Chou, Jiech-Fun Lu
  • Patent number: 10868067
    Abstract: A method of manufacturing a semiconductor device includes: providing a semiconductive substrate; forming a gate structure over the semiconductive substrate; forming a first dielectric layer over the gate structure; forming a first through hole in the first dielectric layer adjacent to and spaced apart from a sidewall of the gate structure; filling the first through hole with a material; forming a via in the first dielectric layer by etching the material and the first dielectric layer; removing the material to form a second through hole in the first dielectric layer; and forming a conductive structure by filling the via and the second through hole with a conductive material.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tsun-Kai Tsao, Shih-Pei Chou, Jiech-Fun Lu
  • Patent number: 10868065
    Abstract: An FSI image sensor device structure is provided. The FSI image sensor device structure includes a pixel region formed in a substrate and a storage region formed in the substrate and adjacent to the pixel region. The FSI image sensor device structure further includes a first gate structure formed over the storage region and a metal shield structure formed over the first gate structure. The FSI image sensor device structure further includes a conductive structure formed adjacent to the first gate structure. In addition, the conductive structure is electrically connected to the metal shield structure through a via.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Tsun-Kai Tsao, Shih-Pei Chou, Jiech-Fun Lu
  • Publication number: 20200388647
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes an image sensing element disposed within a substrate. The substrate has a plurality of protrusions disposed along a first side of the substrate over the image sensing element and a ridge disposed along the first side of the substrate. The ridge continuously extends around the plurality of protrusions.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Ching-Chung Su, Hung-Wen Hsu, Jiech-Fun Lu, Shih-Pei Chou
  • Patent number: 10840287
    Abstract: An interconnect apparatus and a method of forming the interconnect apparatus is provided. Two substrates, such as wafers, dies, or a wafer and a die, are bonded together. A first mask is used to form a first opening extending partially to an interconnect formed on the first wafer. A dielectric liner is formed, and then another etch process is performed using the same mask. The etch process continues to expose interconnects formed on the first substrate and the second substrate. The opening is filled with a conductive material to form a conductive plug.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih Pei Chou, Hung-Wen Hsu, Ching-Chung Su, Chun-Han Tsao, Chia-Chieh Lin, Shu-Ting Tsai, Jiech-Fun Lu, Shih-Chang Liu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20200357837
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor including a light pipe structure. A photodetector disposed within a semiconductor substrate. A gate electrode is over the semiconductor substrate and borders the photodetector. An inter-level dielectric (ILD) layer overlies the semiconductor substrate. A conductive contact is disposed within the ILD layer such that a bottom surface of the conductive contact is below a top surface of the gate electrode. The light pipe structure overlies the photodetector such that a bottom surface of the light pipe structure is recessed below a top surface of the conductive contact.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 12, 2020
    Inventors: Tsun-Kai Tsao, Jiech-Fun Lu, Shih-Pei Chou, Tzu-Ming Wang
  • Patent number: 10818720
    Abstract: An image sensor includes a sensor portion and an ASIC portion bonded to the sensor portion. The sensor portion includes a first substrate having radiation-sensing pixels, a first interconnect structure, a first isolation layer, and a first dielectric layer. The ASIC portion includes a second substrate, a second isolation layer, and a second dielectric layer. The material compositions of the first and second isolation layers and the first and second dielectric layers are configured such that the first and second isolation layers may serve as barrier layers to prevent copper diffusion into oxide. The first and second isolation layers may also serve as etching-stop layers in the formation of the image sensor.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: October 27, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: U-Ting Chen, Shu-Ting Tsai, Cheng-Ying Ho, Tzu-Hsuan Hsu, Shih-Pei Chou
  • Patent number: 10804315
    Abstract: The present disclosure, in some embodiments, relates to method of forming an integrated chip. The method may be performed by forming an image sensing element within a substrate. A dry etching process is performed on the substrate to form a plurality of intermediate protrusions defined by the substrate. A wet etching process is performed on the plurality of intermediate protrusions to form a plurality of protrusions from the plurality of intermediate protrusions.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: October 13, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Chung Su, Hung-Wen Hsu, Jiech-Fun Lu, Shih-Pei Chou
  • Patent number: 10763292
    Abstract: A method includes bonding a first semiconductor chip on a second semiconductor chip, applying an etching process to the first semiconductor chip and the second semiconductor chip until a metal surface of the second semiconductor chip is exposed, wherein as a result of applying the etching process, an opening is formed in the first semiconductor chip and the second semiconductor chip and plating a conductive material in the opening to from a conductive plug.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Shu-Ting Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Shih-Pei Chou, Min-Feng Kao, Szu-Ying Chen
  • Publication number: 20200258989
    Abstract: Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuo-Hwa Tzeng, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Patent number: 10665456
    Abstract: A semiconductor structure comprises a substrate comprising an interlayer dielectric (ILD) and a silicon layer disposed over the ILD, wherein the ILD comprises a conductive structure disposed therein, a dielectric layer disposed over the silicon layer, and a conductive plug electrically connected with the conductive structure and extended from the dielectric layer through the silicon layer to the ILD, wherein the conductive plug has a length extending from the dielectric layer to the ILD and a width substantially consistent along the length.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: May 26, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shih-Pei Chou, Chen-Fa Lu, Jiech-Fun Lu, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 10658474
    Abstract: Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: May 19, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuo-Hwa Tzeng, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Publication number: 20200152675
    Abstract: Some embodiments relate an integrated circuit (IC). The IC includes a first substrate including an array of photodetectors, wherein a bond pad opening extends through the first substrate and is defined by an inner sidewall of the first substrate. An interconnect structure is disposed over the first substrate and includes a plurality of metal layers stacked over one another and disposed within a dielectric structure. The bond pad opening further extends through at least a portion of the interconnect structure and is further defined by an inner sidewall of the interconnect structure. A bond pad structure directly contacts a metal layer of the plurality of metal layers in the interconnect structure and is located at an uppermost extent of the bond pad opening.
    Type: Application
    Filed: December 6, 2019
    Publication date: May 14, 2020
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Ming-Tsong Wang, Shih Pei Chou
  • Publication number: 20200144319
    Abstract: A method of manufacturing a semiconductor device includes: providing a semiconductive substrate; forming a gate structure over the semiconductive substrate; forming a first dielectric layer over the gate structure; forming a first through hole in the first dielectric layer adjacent to and spaced apart from a sidewall of the gate structure; filling the first through hole with a material; forming a via in the first dielectric layer by etching the material and the first dielectric layer; removing the material to form a second through hole in the first dielectric layer; and forming a conductive structure by filling the via and the second through hole with a conductive material.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: TSUN-KAI TSAO, SHIH-PEI CHOU, JIECH-FUN LU
  • Publication number: 20200144207
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure comprises a semiconductive substrate and an interconnect structure over the semiconductive substrate. The semiconductor structure also comprises a bond pad in the semiconductive substrate and coupled to the metal layer. The bond pad comprises two conductive layers.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Inventors: Sheng-Chau CHEN, Shih-Pei CHOU, Ming-Che LEE, Kuo-Ming WU, Cheng-Hsien CHOU, Cheng-Yuan TSAI, Yeur-Luen TU