Patents by Inventor Shih-Syuan Huang

Shih-Syuan Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9425099
    Abstract: Some embodiments of the present disclosure relate to an implant that improves long-channel transistor performance with little to no impact on short-channel transistor performance. To mitigate DIBL, both long-channel and short-channel transistors on a substrate are subjected to a halo implant. While the halo implant improves short-channel transistor performance, it degrades long-channel transistor performance. Therefore, a counter-halo implant is performed on the long-channel transistors only to restore their performance. To achieve this, the counter-halo implant is performed at an angle that introduces dopant impurities near the source/drain regions of the long-channel transistors to counteract the effects of the halo implant, while the counter-halo implant is simultaneously shadowed from reaching the channel of the short-channel transistors.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: August 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsing Yu, Shih-Syuan Huang, Ken-Ichi Goto, Yi-Ming Sheu
  • Patent number: 9419136
    Abstract: The present disclosure relates to a transistor device having epitaxial source and drain regions with dislocation stress memorization (DSM) regions that provide stress to an epitaxial channel region, and an associated method of formation. The transistor device has an epitaxial stack disposed over a semiconductor substrate, and a gate structure disposed over the epitaxial stack. A channel region extends below the gate structure between epitaxial source and drain regions located on opposing sides of the gate structure. First and second dislocation stress memorization (DSM) regions have a stressed lattice that generates stress within the channel region. The first and second DSM regions respectively extend from below the epitaxial source region to a first location within the epitaxial source region from below the epitaxial drain region to a second location within the epitaxial drain region. Using the first and second DSM regions to stress the channel region, improves device performance.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: August 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsing Yu, Shih-Syuan Huang, Yi-Ming Sheu, Ken-Ichi Goto
  • Patent number: 9362404
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20160064560
    Abstract: The present disclosure relates to a transistor device having an epitaxial carbon layer and/or a carbon implantation region that provides for a low variation of voltage threshold, and an associated method of formation. In some embodiments, the transistor device has an epitaxial region arranged within a recess within a semiconductor substrate. The epitaxial region has a carbon doped silicon epitaxial layer and a silicon epitaxial layer disposed onto the carbon doped silicon epitaxial layer. A gate structure is arranged over the silicon epitaxial layer. The gate structure has a gate dielectric layer disposed onto the silicon epitaxial layer and a gate electrode layer disposed onto the gate dielectric layer. A source region and a drain region are arranged on opposing sides of a channel region disposed below the gate structure.
    Type: Application
    Filed: November 9, 2015
    Publication date: March 3, 2016
    Inventors: Tsung-Hsing Yu, Chia-Wen Liu, Yeh Hsu, Shih-Syuan Huang, Ken-Ichi Goto, Zhiqiang Wu
  • Publication number: 20160035892
    Abstract: The present disclosure relates to method of forming a transistor device having epitaxial source and drain regions with dislocation stress memorization (DSM) regions that provide stress to an epitaxial channel region, and an associated device. The method forms a first dislocation stress memorization (DSM) region and a second DSM region having stressed lattices within a substrate. The substrate is selectively etched to form a source cavity and a drain cavity extending from an upper surface of the substrate to positions contacting the first DSM region and the second DSM region. An epitaxial source is formed within the source cavity and an epitaxial drain region is formed within the drain cavity. A gate structure is formed over the substrate at a location laterally between the epitaxial source region and the epitaxial drain region.
    Type: Application
    Filed: October 12, 2015
    Publication date: February 4, 2016
    Inventors: Tsung-Hsing Yu, Shih-Syuan Huang, Yi-Ming Sheu, Ken-Ichi Goto
  • Patent number: 9252236
    Abstract: A method for improving analog gain in long channel devices associated with a semiconductor workpiece is provided. A gate oxide layer is formed on the semiconductor workpiece, and a plurality of gate structures are formed over the gate oxide layer, wherein a first pair of the plurality of gate structures define a short channel device region and a second pair of the plurality of gate structures define a long channel device region. A first ion implantation with a first dopant is performed at a first angle, wherein the first dopant is one of an n-type dopant and a p-type dopant. A second ion implantation with a second dopant is performed at a second angle, wherein the second angle is greater than the first angle. The second dopant is one or an n-type dopant and a p-type dopant that is opposite of the first dopant, and a height of the plurality of gate structures and the second angle generally prevents the second ion implantation from implanting ions into the short channel device region.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: February 2, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Syuan Huang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 9224814
    Abstract: The present disclosure relates to a method of forming a transistor device having a carbon implantation region that provides for a low variation of voltage threshold, and an associated apparatus. The method is performed by forming a well region within a semiconductor substrate. The semiconductor substrate is selectively etched to form a recess within the well region. After formation of the recess, a carbon implantation is selectively performed to form a carbon implantation region within the semiconductor substrate at a position underlying the recess. An epitaxial growth is then performed to form one or more epitaxial layers within the recess at a position overlying the carbon implantation region. Source and drain regions are subsequently formed within the semiconductor substrate such that a channel region, comprising the one or more epitaxial layers, separates the source/drains from one another.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsing Yu, Chia-Wen Liu, Yeh Hsu, Shih-Syuan Huang, Ken-Ichi Goto, Zhiqiang Wu
  • Publication number: 20150295085
    Abstract: The present disclosure relates to a transistor device having epitaxial source and drain regions with dislocation stress memorization (DSM) regions that provide stress to an epitaxial channel region, and an associated method of formation. The transistor device has an epitaxial stack disposed over a semiconductor substrate, and a gate structure disposed over the epitaxial stack. A channel region extends below the gate structure between epitaxial source and drain regions located on opposing sides of the gate structure. First and second dislocation stress memorization (DSM) regions have a stressed lattice that generates stress within the channel region. The first and second DSM regions respectively extend from below the epitaxial source region to a first location within the epitaxial source region from below the epitaxial drain region to a second location within the epitaxial drain region. Using the first and second DSM regions to stress the channel region, improves device performance.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 15, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsing Yu, Shih-Syuan Huang, Yi-Ming Sheu, Ken-Ichi Goto
  • Publication number: 20150263171
    Abstract: Some embodiments of the present disclosure relate to a semiconductor device configured to mitigate against parasitic coupling while maintaining threshold voltage control for comparatively narrow transistors. In some embodiments, a semiconductor device formed on a semiconductor substrate. The semiconductor device comprises a channel comprising an epitaxial layer that forms an outgrowth above the surface of the semiconductor substrate, and a gate material formed over the epitaxial layer. In some embodiments, a method of forming a semiconductor device is disclosed. The method comprises etching the surface of a semiconductor substrate to form a recess between first and second isolation structures, forming an epitaxial layer within the recess that forms an outgrowth above the surface of the semiconductor substrate, and forming a gate material over the epitaxial layer. Other embodiments are also disclosed.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 17, 2015
    Inventors: Yeh Hsu, Chia-Wen Liu, Tsung-Hsing Yu, Ken-Ichi Goto, Shih-Syuan Huang
  • Publication number: 20150243759
    Abstract: A method for improving analog gain in long channel devices associated with a semiconductor workpiece is provided. A gate oxide layer is formed on the semiconductor workpiece, and a plurality of gate structures are formed over the gate oxide layer, wherein a first pair of the plurality of gate structures define a short channel device region and a second pair of the plurality of gate structures define a long channel device region. A first ion implantation with a first dopant is performed at a first angle, wherein the first dopant is one of an n-type dopant and a p-type dopant. A second ion implantation with a second dopant is performed at a second angle, wherein the second angle is greater than the first angle. The second dopant is one or an n-type dopant and a p-type dopant that is opposite of the first dopant, and a height of the plurality of gate structures and the second angle generally prevents the second ion implantation from implanting ions into the short channel device region.
    Type: Application
    Filed: March 24, 2014
    Publication date: August 27, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Syuan Huang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Publication number: 20150243739
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20150200139
    Abstract: Some embodiments of the present disclosure relate to an implant that improves long-channel transistor performance with little to no impact on short-channel transistor performance. To mitigate DIBL, both long-channel and short-channel transistors on a substrate are subjected to a halo implant. While the halo implant improves short-channel transistor performance, it degrades long-channel transistor performance. Therefore, a counter-halo implant is performed on the long-channel transistors only to restore their performance. To achieve this, the counter-halo implant is performed at an angle that introduces dopant impurities near the source/drain regions of the long-channel transistors to counteract the effects of the halo implant, while the counter-halo implant is simultaneously shadowed from reaching the channel of the short-channel transistors.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsing Yu, Shih-Syuan Huang, Ken-Ichi Goto, Yi-Ming Sheu
  • Publication number: 20150200296
    Abstract: The present disclosure relates to a method of forming a transistor device having a carbon implantation region that provides for a low variation of voltage threshold, and an associated apparatus. The method is performed by forming a well region within a semiconductor substrate. The semiconductor substrate is selectively etched to form a recess within the well region. After formation of the recess, a carbon implantation is selectively performed to form a carbon implantation region within the semiconductor substrate at a position underlying the recess. An epitaxial growth is then performed to form one or more epitaxial layers within the recess at a position overlying the carbon implantation region. Source and drain regions are subsequently formed within the semiconductor substrate such that a channel region, comprising the one or more epitaxial layers, separates the source/drains from one another.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 16, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsing Yu, Chia-Wen Liu, Yeh Hsu, Shih-Syuan Huang, Ken-Ichi Goto, Zhiqiang Wu