Patents by Inventor Shijie Li

Shijie Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7558312
    Abstract: An apparatus for processing spread spectrum signals digitized at a predetermined sampling frequency. The apparatus includes an intermediate frequency signal preprocessing unit, a plurality of parallel block integrators. The intermediate frequency signal preprocessing unit is capable of generating pre-integration results based on an input signal and local reference signals at a predetermined rate. The pre-integration results produced by the intermediate frequency signal preprocessing unit are grouped into sets of pre-integration results. Each set of the pre-integration results contains a predetermined number of pre-integration results. The plurality of parallel block integrators is in communication with the intermediate frequency signal preprocessing unit.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: July 7, 2009
    Assignee: O2Micro International Ltd.
    Inventors: MingQiang Cheng, ShiJie Li, Bo Yu
  • Patent number: 7526015
    Abstract: A method for processing spread spectrum signals through a two step integration process in a circuit having an intermediate frequency signal preprocessing unit and a plurality of block integrators, wherein the circuit receiving a digitized signal, a local reference signal, and a pseudorandom noise code. The method includes generating a plurality of data streams by the intermediate frequency signal preprocessing unit using the digitized signal and the reference signal, receiving at each block integrator a data stream from the plurality of data streams and the pseudorandom noise code, performing a predetermined number of partial correlations at each block integrator using hybrid correlation technique based on the data stream and the pseudorandom noise code to obtain a predetermined number of partial correlation results, and computing a predetermined number of complete correlation results based on the predetermined number of partial correlation results.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: April 28, 2009
    Assignee: 02Micro International Ltd.
    Inventors: MingQiang Cheng, ShiJie Li, Bo Yu
  • Publication number: 20070201539
    Abstract: A method for estimating signal quality of a spread spectrum signal is provided. The method includes squaring a plurality of in-phase correlation results and a plurality of quadrature correlation results, summing each squared in-phase correlation result and the corresponding correlation result to obtain a plurality of sum-of-square values, detecting a peak value among the plurality of sum-of-square results, calculating an average of non-peak values among the plurality of sum-of-square results. The peak value is regarded as a signal power value, while the averaged non-peak values are regarded as an average noise power value. A signal-to-noise ratio is then calculated based on the signal power value and the average noise power value. A method for determining the parameters for the tracking loop is also provided. The method includes estimating the signal-to-noise ratio of the spread spectrum signal, and determining the tracking loop parameters based on the signal-to-noise ratio.
    Type: Application
    Filed: February 28, 2006
    Publication date: August 30, 2007
    Inventors: Bo Yu, Jianhui Hou, ShiJie Li, MingQiang Cheng
  • Publication number: 20070183486
    Abstract: The present invention is a method for GPS positioning in a weak signal environment. The method includes obtaining assistance data for a GPS signal from a satellite at a predetermined time, wherein the assistance data including predicted navigation data, Doppler shift and Doppler shift rate and the GPS signal being modulated by a carrier signal, a pseudorandom code and navigation data, estimating a predicted receiving time for the GPS signal reaching the GPS receiver, capturing the GPS signal, converting the GPS signal to an intermediate frequency signal, acquiring a code phase of the pseudorandom code from the intermediate frequency signal by using the assistance data and the predicted receiving time, and obtaining a position for the GPS receiver based on the predicted navigation data and the code phase of the pseudorandom code.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 9, 2007
    Inventors: MingQiang Cheng, Cheng Li, Bo Yu, ShiJie Li, Xiquan Yang, Yi Zeng
  • Publication number: 20070058695
    Abstract: A method for processing spread spectrum signals through a two step integration process in a circuit having an intermediate frequency signal preprocessing unit and a plurality of block integrators, wherein the circuit receiving a digitized signal, a local reference signal, and a pseudorandom noise code. The method includes generating a plurality of data streams by the intermediate frequency signal preprocessing unit using the digitized signal and the reference signal, receiving at each block integrator a data stream from the plurality of data streams and the pseudorandom noise code, performing a predetermined number of partial correlations at each block integrator using hybrid correlation technique based on the data stream and the pseudorandom noise code to obtain a predetermined number of partial correlation results, and computing a predetermined number of complete correlation results based on the predetermined number of partial correlation results.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 15, 2007
    Inventors: MingQiang Cheng, ShiJie Li, Bo Yu
  • Publication number: 20070002933
    Abstract: An apparatus for processing spread spectrum signals digitized at a predetermined sampling frequency. The apparatus includes an intermediate frequency signal preprocessing unit, a plurality of parallel block integrators. The intermediate frequency signal preprocessing unit is capable of generating pre-integration results based on an input signal and local reference signals at a predetermined rate. The pre-integration results Produced by the intermediate frequency signal preprocessing unit are grouped into sets of pre-integration results. Each set of the pre-integration results contains a predetermined number of pre-integration results. The plurality of parallel block integrators is in communication with the intermediate frequency signal preprocessing unit.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: MingQiang Cheng, ShiJie Li, Bo Yu
  • Publication number: 20040004024
    Abstract: The present invention relates to non-noble metal catalyst comprising Cu—Al/Ce—Al complex oxides and aluminum oxide support. The catalysts comprise Ce—Al complex oxide and Cu—Al complex oxide successively loaded on the aluminum oxide support, wherein the loading weight ratio is 0.02-0.10 for Ce—Al—O/Al2O3 and 0.05-0.15 for Cu—Al—O/Al2O3, and the Cu—Al complex oxide is dispersed in cluster form on the surface of the aluminum oxide support pre-covered with high dispersed nanoparticles of the Ce—Al complex oxide.
    Type: Application
    Filed: April 21, 2003
    Publication date: January 8, 2004
    Inventors: Bingxiong Lin, Wanjing Zhang, Yingjun Liu, Shijie Li, Neng Li
  • Patent number: 6596249
    Abstract: The present invention relates to non-noble metal combustion catalyst for carbon monoxide comprising Cu—Al/Ce—Al complex oxides and aluminum oxide support. The catalysts comprise Ce—Al complex oxide and Cu—Al complex oxide successively loaded on the aluminum oxide support, wherein the loading weight ratio is 0.02-0.10 for Ce—Al—O/Al2O3 and 0.05-0.15 for Cu—Al—O/Al2O3, and the Cu—Al complex oxide is dispersed in cluster form on the surface of the aluminum oxide support pre-covered with high dispersed nanoparticles of the Ce—Al complex oxide. Furthermore, the present invention relates to a process for preparing the catalysts and their use as combustion promoter with high catalytic activity, high hydrothermal stability and ability of reducing NOx exhaust in the fluid catalytic cracking (FCC) process of petroleum refining.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: July 22, 2003
    Assignee: Peking University
    Inventors: Bingxiong Lin, Wanjing Zhang, Yingjun Liu, Shijie Li, Neng Li
  • Publication number: 20020061273
    Abstract: The present invention relates to non-noble metal combustion catalyst for carbon monoxide comprising Cu—Al/Ce—Al complex oxides and aluminum oxide support. The catalysts comprise Ce—Al complex oxide and Cu—Al complex oxide successively loaded on the aluminum oxide support, wherein the loading weight ratio is 0.02-0.10 for Ce—Al—O/Al2O3 and 0.05-0.15 for Cu—Al—O/Al2O3, and the Cu—Al complex oxide is dispersed in cluster form on the surface of the aluminum oxide support pre-covered with high dispersed nanoparticles of the Ce—Al complex oxide. Furthermore, the present invention relates to a process for preparing the catalysts and their use as combustion promoter with high catalytic activity, high hydrothermal stability and ability of reducing NOx exhaust in the fluid catalytic cracking (FCC) process of petroleum refining.
    Type: Application
    Filed: April 4, 2001
    Publication date: May 23, 2002
    Inventors: Bingxiong Lin, Wanjing Zhang, Yingjun Liu, Shijie Li, Neng Li