Patents by Inventor Shikang CHENG

Shikang CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11887979
    Abstract: A transient voltage suppression device and a manufacturing method therefor, the transient voltage suppression device including: a substrate, a first conductivity type well region and a second conductivity type well region disposed in the substrate. The first conductivity type well region includes a first well, a second well, and a third well. The second conductivity type well region includes a fourth well that isolates the first well from the second well, and a fifth well that isolates the second well from the third well. The device further includes a Zener diode well region provided in the first well, a first doped region provided in the Zener diode well region, a second doped region provided in the Zener diode well region, a third doped region provided in the second well, a fourth doped region provided in the third well, and a fifth doped region provided in the third well.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 30, 2024
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Publication number: 20230122120
    Abstract: A transient voltage suppression device includes: a substrate; a first conductive type well region including a first well and a second well; a second conductive type well region including a third well and a fourth well, the third well being disposed between the first well and the second well so as to isolate the first well and the second well, and the second well being disposed between the third well and the fourth well; a zener diode active region; a first doped region, provided in the first well; a second doped region, provided in the first well; a third doped region, provided in the second well; a fourth doped region, provided in the second well; a fifth doped region, provided in the zener diode active region; and a sixth doped region, provided in the zener diode active region.
    Type: Application
    Filed: August 15, 2019
    Publication date: April 20, 2023
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11430780
    Abstract: A TVS device and a manufacturing method therefor. The TVS device comprises: a first doping type semiconductor substrate (100); a second doping type deep well I (101), a second doping type deep well II (102), and a first doping type deep well (103) provided on the semiconductor substrate; a second doping type heavily doped region I (104) provided in the second doping type deep well I (101); a first doping type well region (105) and a first doping type heavily doped region I (106) provided in the second doping type deep well II (102); a first doping type heavily doped region II (107) and a second doping type heavily doped region II (108) provided in the first doping type deep well (105); a second doping type heavily doped region III (109) located in the first doping type well region (105) and the second doping type deep well II (102); and a first doping type doped region (110) provided in the first doping type well region (105).
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: August 30, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11387349
    Abstract: A trench gate depletion-type VDMOS device and a method for manufacturing the same are disclosed. The device comprises a drain region; a trench gate including a gate insulating layer on an inner wall of a trench and a gate electrode filled in the trench and surrounded by the gate insulating layer; a channel region located around the gate insulating layer; a well region located on both sides of the trench gate; a source regions located within the well region; a drift region located between the well region and the drain region; a second conductive-type doped region located between the channel region and the drain region; and a first conductive-type doped region located on both sides of the second conductive-type doped region and located between the drift region and the drain region.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: July 12, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan Gu, Shikang Cheng, Sen Zhang
  • Patent number: 11276690
    Abstract: The present application provides an integrated semiconductor device and an electronic apparatus, comprising a semiconductor substrate and a first doped epitaxial layer having a first region, a second region, and a third region; a partition structure is arranged in the third region; the first region is formed having at least two second doped deep wells, and the second region is formed having at least two second doped deep wells; a dielectric island partially covers a region between two adjacent doped deep wells in the first region and second region; a gate structure covers the dielectric island; a first doped source region is located on the two sides of the gate structure, and a first doped source region located in the same second doped deep well is separated; a first doped trench is located on the two sides of the dielectric island in the first region, and extends laterally to the first doped source region.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 15, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11257720
    Abstract: A manufacturing method for a semiconductor device, and an integrated semiconductor device. The manufacturing method comprises: on a semiconductor substrate, forming an epitaxial layer having a first region, a second region, and a third region; forming at least one groove in the third region, forming at least two second doping deep traps in the first region, and forming at least two second doping deep traps in the second region; forming a first dielectric island between the second doping deep traps and forming a second dielectric island on the second doping deep traps; forming a first doping groove at both sides of the first dielectric island in the first region; forming a gate structure on the first dielectric island; forming an isolated first doping source region using the second dielectric island as a mask.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: February 22, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11233045
    Abstract: A transient voltage suppression device includes a substrate; a first conductivity type well region disposed in the substrate and comprising a first well and a second well; a third well disposed on the substrate, a bottom part of the third well extending to the substrate; a fourth well disposed in the first well; a first doped region disposed in the second well; a second doped region disposed in the third well; a third doped region disposed in the fourth well; a fourth doped region disposed in the fourth well; a fifth doped region extending from inside of the fourth well to the outside of the fourth well, a portion located outside the fourth well being located in the first well; a sixth doped region disposed in the first well; a seventh doped region disposed below the fifth doped region and in the first well.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: January 25, 2022
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Publication number: 20210358903
    Abstract: A TVS device and a manufacturing method therefor. The TVS device comprises: a first doping type semiconductor substrate (100); a second doping type deep well I (101), a second doping type deep well II (102), and a first doping type deep well (103) provided on the semiconductor substrate; a second doping type heavily doped region I (104) provided in the second doping type deep well I (101); a first doping type well region (105) and a first doping type heavily doped region I (106) provided in the second doping type deep well II (102); a first doping type heavily doped region II (107) and a second doping type heavily doped region II (108) provided in the first doping type deep well (105); a second doping type heavily doped region III (109) located in the first doping type well region (105) and the second doping type deep well II (102); and a first doping type doped region (110) provided in the first doping type well region (105).
    Type: Application
    Filed: November 1, 2019
    Publication date: November 18, 2021
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11171223
    Abstract: A method for manufacturing a semiconductor device and an integrated semiconductor device, said method comprising: providing an epitaxial layer having a first region and a second region, forming, in the first region, at least two second doping-type deep wells, and forming, in the second region, at least two second doping-type deep wells; forming a first dielectric island between the second doping-type deep wells and forming a second dielectric island on the second doping-type deep wells; forming a first doping-type trench on two sides of the first dielectric island in the first region; forming a gate structure on the first dielectric island; and forming a separated first doping-type source region by using the second dielectric island as a mask, the first doping-type trench extending, in the first region, transversally to the first doping-type source region.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: November 9, 2021
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Publication number: 20210313312
    Abstract: A transient voltage suppression device includes a substrate; a first conductivity type well region disposed in the substrate and comprising a first well and a second well; a third well disposed on the substrate, a bottom part of the third well extending to the substrate; a fourth well disposed in the first well; a first doped region disposed in the second well; a second doped region disposed in the third well; a third doped region disposed in the fourth well; a fourth doped region disposed in the fourth well; a fifth doped region extending from inside of the fourth well to the outside of the fourth well, a portion located outside the fourth well being located in the first well; a sixth doped region disposed in the first well; a seventh doped region disposed below the fifth doped region and in the first well.
    Type: Application
    Filed: September 4, 2019
    Publication date: October 7, 2021
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Publication number: 20210249403
    Abstract: A transient voltage suppression device and a manufacturing method therefor, the transient voltage suppression device including: a substrate, a first conductivity type well region and a second conductivity type well region disposed in the substrate. The first conductivity type well region includes a first well, a second well, and a third well. The second conductivity type well region includes a fourth well that isolates the first well from the second well, and a fifth well that isolates the second well from the third well. The device further includes a Zener diode well region provided in the first well, a first doped region provided in the Zener diode well region, a second doped region provided in the Zener diode well region, a third doped region provided in the second well, a fourth doped region provided in the third well, and a fifth doped region provided in the third well.
    Type: Application
    Filed: August 15, 2019
    Publication date: August 12, 2021
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Publication number: 20210167191
    Abstract: A trench gate depletion-type VDMOS device and a method for manufacturing the same are disclosed. The device comprises a drain region; a trench gate including a gate insulating layer on an inner wall of a trench and a gate electrode filled in the trench and surrounded by the gate insulating layer; a channel region located around the gate insulating layer; a well region located on both sides of the trench gate; a source regions located within the well region; a drift region located between the well region and the drain region; a second conductive-type doped region located between the channel region and the drain region; and a first conductive-type doped region located on both sides of the second conductive-type doped region and located between the drift region and the drain region.
    Type: Application
    Filed: October 14, 2019
    Publication date: June 3, 2021
    Inventors: Yan Gu, Shikang Cheng, Sen Zhang
  • Patent number: 10879385
    Abstract: A device integrated with a junction field-effect transistor, the device is divided into a JFET region and a power device area, and the device includes: a drain (201) having a first conduction type; and a first conduction type region (214) disposed on a front face of the drain; the JFET region further includes: a JFET source (208) having a first conduction type; a first well (202) having a second conduction type; a metal electrode (212) formed on the JFET source (208), which is in contact with the JFET source (208); a JFET metal gate (213) disposed on the first well (202) at both sides of the JFET source (208); and a first clamping region (210) located below the JFET metal gate (213) and within the first well (202).
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 29, 2020
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan Gu, Shikang Cheng, Sen Zhang
  • Patent number: 10872823
    Abstract: A device integrated with JFET, the device is divided into a JFET region and a power device region, and the device includes: a drain (201) with a first conduction type; and a first conduction type region disposed on a front surface of the drain (201); the JFET region includes: a first well (205) with a second conduction type and formed in the first conduction type region; a second well (207) with a second conduction type and formed in the first conduction type region; a JFET source (212) with the first conduction type; a metal electrode formed on the JFET source (212), which is in contact with the JFET source (212); and a second conduction type buried layer (203) formed under the JFET source (212) and the second well (207).
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 22, 2020
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan Gu, Shikang Cheng, Sen Zhang
  • Patent number: 10867995
    Abstract: A device integrated with a depletion-mode junction field-effect transistor and a method for manufacturing the device. The device includes: a well region, which is of a second conduction type and formed within a first conduction region (214); a JFET source (210), which is of a first conduction type and formed within the well region; a metal electrode (212) of the JFET sources formed on the JFET sources (210), which is in contact with the JFET sources (210); a lateral channel region (208), which is of the first conduction type and formed between two adjacent JFET sources (210), while two ends thereof are in contact with the two adjacent JFET sources (210); and a JFET metal gate (213) formed on the well region.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: December 15, 2020
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan Gu, Shikang Cheng, Sen Zhang
  • Publication number: 20200350420
    Abstract: A method for manufacturing a semiconductor device and an integrated semiconductor device, said method comprising: providing an epitaxial layer having a first region and a second region, forming, in the first region, at least two second doping-type deep wells, and forming, in the second region, at least two second doping-type deep wells; forming a first dielectric island between the second doping-type deep wells and forming a second dielectric island on the second doping-type deep wells; forming a first doping-type trench on two sides of the first dielectric island in the first region; forming a gate structure on the first dielectric island; and forming a separated first doping-type source region by using the second dielectric island as a mask, the first doping-type trench extending, in the first region, transversally to the first doping-type source region.
    Type: Application
    Filed: November 21, 2018
    Publication date: November 5, 2020
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang CHENG, Yan GU, Sen ZHANG
  • Publication number: 20200335607
    Abstract: A manufacturing method for a semiconductor device, and an integrated semiconductor device. The manufacturing method comprises: on a semiconductor substrate, forming an epitaxial layer having a first region, a second region, and a third region; forming at least one groove in the third region, forming at least two second doping deep traps in the first region, and forming at least two second doping deep traps in the second region; forming a first dielectric island between the second doping deep traps and forming a second dielectric island on the second doping deep traps; forming a first doping groove at both sides of the first dielectric island in the first region; forming a gate structure on the first dielectric island; forming an isolated first doping source region using the second dielectric island as a mask.
    Type: Application
    Filed: November 21, 2018
    Publication date: October 22, 2020
    Inventors: Shikang CHENG, Yan GU, Sen ZHANG
  • Publication number: 20200335498
    Abstract: The present application provides an integrated semiconductor device and an electronic apparatus, comprising a semiconductor substrate and a first doped epitaxial layer having a first region, a second region, and a third region; a partition structure is arranged in the third region; the first region is formed having at least two second doped deep wells, and the second region is formed having at least two second doped deep wells; a dielectric island partially covers a region between two adjacent doped deep wells in the first region and second region; a gate structure covers the dielectric island; a first doped source region is located on the two sides of the gate structure, and a first doped source region located in the same second doped deep well is separated; a first doped trench is located on the two sides of the dielectric island in the first region, and extends laterally to the first doped source region.
    Type: Application
    Filed: November 21, 2018
    Publication date: October 22, 2020
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang CHENG, Yan GU, Sen ZHANG
  • Publication number: 20190259669
    Abstract: A device integrated with JFET, the device is divided into a JFET region and a power device region, and the device includes: a drain (201) with a first conduction type; and a first conduction type region disposed on a front surface of the drain (201); the JFET region includes: a first well (205) with a second conduction type and formed in the first conduction type region; a second well (207) with a second conduction type and formed in the first conduction type region; a JFET source (212) with the first conduction type; a metal electrode formed on the JFET source (212), which is in contact with the JFET source (212); and a second conduction type buried layer (203) formed under the JFET source (212) and the second well (207).
    Type: Application
    Filed: August 31, 2017
    Publication date: August 22, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan GU, Shikang CHENG, Sen ZHANG
  • Publication number: 20190252537
    Abstract: A device integrated with a junction field-effect transistor, the device is divided into a JFET region and a power device area, and the device includes: a drain (201) having a first conduction type; and a first conduction type region (214) disposed on a front face of the drain; the JFET region further includes: a JFET source (208) having a first conduction type; a first well (202) having a second conduction type; a metal electrode (212) formed on the JFET source (208), which is in contact with the JFET source (208); a JFET metal gate (213) disposed on the first well (202) at both sides of the JFET source (208); and a first clamping region (210) located below the JFET metal gate (213) and within the first well (202).
    Type: Application
    Filed: August 31, 2017
    Publication date: August 15, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan GU, Shikang CHENG, Sen ZHANG