Patents by Inventor Shilpa Talwar

Shilpa Talwar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12245052
    Abstract: A computing node to implement an RL management entity in an NG wireless network includes a NIC and processing circuitry coupled to the NIC. The processing circuitry is configured to generate a plurality of network measurements for a corresponding plurality of network functions. The functions are configured as a plurality of ML models forming a multi-level hierarchy. Control signaling from an ML model of the plurality is decoded, the ML model being at a predetermined level (e.g., a lowest level) in the hierarchy. The control signaling is responsive to a corresponding network measurement and at least second control signaling from a second ML model at a level that is higher than the predetermined level. A plurality of reward functions is generated for training the ML models, based on the control signaling from the MLO model at the predetermined level in the multi-level hierarchy.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 4, 2025
    Assignee: Intel Corporation
    Inventors: Vasuki Narasimha Swamy, Hosein Nikopour, Oner Orhan, Shilpa Talwar
  • Patent number: 12237589
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: February 25, 2025
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 12192820
    Abstract: The present disclosure is related to multi-access traffic management in edge computing environments, and in particular, artificial intelligence (AI) and/or machine learning (ML) techniques for multi-access traffic management. A scalable AI/ML architecture for multi-access traffic management is provided. Reinforcement learning (RL) and/or Deep RL (DRL) approaches that learn policies and/or parameters for traffic management and/or for distributing multi-access traffic through interacting with the environment are also provided. Deep contextual bandit RL techniques for intelligent traffic management for edge networks are also provided. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: January 7, 2025
    Assignee: Intel Corporation
    Inventors: Shu-ping Yeh, Jingwen Bai, Shilpa Talwar
  • Patent number: 12184316
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: December 31, 2024
    Assignee: Apple Inc.
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Patent number: 12184554
    Abstract: The present disclosure is related to Multi-Access Management Services (MAMS), which is a programmable framework that provides mechanisms for the flexible selection of network paths in a multi-access (MX) communication environment, based on an application's needs. Generic Multi-Access (GMA) functions are also integrated into the MAMS framework. The present disclosure discusses Per-Packet Prioritization (PPP), intra-flow classification, and Active Queue Management (AQM) techniques for MAMS/GMA systems. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: December 31, 2024
    Assignee: Intel Corporation
    Inventors: Jing Zhu, Menglei Zhang, Shu-ping Yeh, Shilpa Talwar, Juan Fang
  • Patent number: 12166555
    Abstract: Various embodiments herein provide techniques for reducing computational complexity in multiple input multiple output (MIMO, e.g., massive MIMO (mMIMO)) communications, such as efficient decomposition of a channel covariance matrix. Embodiments enable accurate mMIMO channel estimation with relatively low computational complexity compared with prior techniques. Additionally, embodiments may provide efficient beamforming and/or spatial compression. Other embodiments may be described and claimed.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: December 10, 2024
    Assignee: Intel Corporation
    Inventors: Jan Schreck, Nicholas Whinnett, Thushara Hewavithana, Yang-Seok Choi, Shilpa Talwar
  • Patent number: 12149311
    Abstract: An apparatus, method and computer readable medium for special thermal density reduction by antenna thinning. A system comprises N transmit/receive (TX/RX) chains, where each TX/RX chain comprises an RFFE and each RFFE comprises one or more thermal sensors configured to measure heat in the RFFE. An antenna array coupled to the plurality of TX/RX chains. A codebook that comprises a plurality of code words configured to respond to real-time heat measurements from the thermal sensors in each TX/RX chain is configured to switch off selected TX/RX chains to reduce thermal density at the antenna array while maintaining M RFFEs switched on, where M<N and the desired beamforming gain is 10 log 10(M).
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: November 19, 2024
    Assignee: Apple Inc.
    Inventors: Oner Orhan, Brent Elliott, Hosein Nikopour, Eren Sasoglu, Shilpa Talwar
  • Publication number: 20240372755
    Abstract: According to various examples, communication device is described comprising a receiver configured to receive a signal from another communication device via a radio channel and a processor configured to estimate a power delay profile of the radio channel by maximum likelihood estimation of the power delay profile from the received signal and perform receive signal processing in accordance with the estimated power delay profile.
    Type: Application
    Filed: December 22, 2021
    Publication date: November 7, 2024
    Inventors: Yang-Seok CHOI, Jan SCHRECK, Shilpa TALWAR, Tariq QURESHI, Sagar DHAKAL, Thomas TETZLAFF, Thushara HEWAVITHANA
  • Publication number: 20240372600
    Abstract: Devices and methods for performing a beam management operation are provided in this disclosure. A radio communication device may include a transceiver that is configured to transmit a plurality of reference signals, each reference signal being beamformed based on a set of beamforming weights that is different from a set of beamforming weights of at least one other reference signal, and receive a plurality of measurement results representing measurements for at least some of the plurality of reference signals. The radio communication device may further include a processor that is configured to provide the plurality of measurement results to a machine learning model configured to determine a parameter for a beam management operation using a predefined codebook and perform the beam management operation according to the predefined codebook based on the determined parameter.
    Type: Application
    Filed: December 23, 2021
    Publication date: November 7, 2024
    Inventors: Jan SCHRECK, Yang-Seok CHOI, Nageen HIMAYAT, Di LIU, Shilpa TALWAR
  • Patent number: 12127103
    Abstract: A circuit arrangement includes a preprocessing circuit configured to obtain context information related to a user location, a learning circuit configured to determine a predicted user movement based on context information related to a user location to obtain a predicted route and to determine predicted radio conditions along the predicted route, and a decision circuit configured to, based on the predicted radio conditions, identify one or more first areas expected to have a first type of radio conditions and one or more second areas expected to have a second type of radio conditions different from the first type of radio conditions and to control radio activity while traveling on the predicted route according to the one or more first areas and the one or more second areas.
    Type: Grant
    Filed: September 7, 2023
    Date of Patent: October 22, 2024
    Assignee: Intel Corporation
    Inventors: Shahrnaz Azizi, Biljana Badic, John Browne, Dave Cavalcanti, Hyung-Nam Choi, Thorsten Clevorn, Ajay Gupta, Maruti Gupta Hyde, Ralph Hasholzner, Nageen Himayat, Simon Hunt, Ingolf Karls, Thomas Kenney, Yiting Liao, Christopher MacNamara, Marta Martinez Tarradell, Markus Dominik Mueck, Venkatesan Nallampatti Ekambaram, Niall Power, Bernhard Raaf, Reinhold Schneider, Ashish Singh, Sarabjot Singh, Srikathyayani Srikanteswara, Shilpa Talwar, Feng Xue, Zhibin Yu, Robert Zaus, Stefan Franz, Uwe Kliemann, Christian Drewes, Juergen Kreuchauf
  • Publication number: 20240305533
    Abstract: The present disclosure provides a resilient (radio) access network ((R)AN) slicing framework encompassing a resource planning engine and distributed dynamic slice-aware scheduling modules at one or more network access nodes, edge compute nodes, or cloud computing service. The resilient (R)AN slicing framework includes resource planning and slice-aware scheduling, as well as signaling exchanges for provisioning resilient (R)AN slicing. The intelligent (R)AN slicing framework can realize resource isolation in a more efficient and agile manner than existing network slicing technologies.
    Type: Application
    Filed: June 30, 2022
    Publication date: September 12, 2024
    Inventors: Jingwen BAI, Shu-ping YEH, Shilpa TALWAR
  • Patent number: 12061957
    Abstract: Systems, apparatuses, methods, and computer-readable media, are provided for distributed machine learning (ML) training using heterogeneous compute nodes in a heterogeneous computing environment, where the heterogeneous compute nodes are connected to a master node via respective wireless links. ML computations are performed by individual heterogeneous compute nodes on respective training datasets, and a master combines the outputs of the ML computations obtained from individual heterogeneous compute nodes. The ML computations are balanced across the heterogeneous compute nodes based on knowledge of network conditions and operational constraints experienced by the heterogeneous compute nodes. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: August 13, 2024
    Assignee: Intel Corporation
    Inventors: Saurav Prakash, Sagar Dhakal, Yair Yona, Nageen Himayat, Shilpa Talwar
  • Publication number: 20240243477
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: February 15, 2024
    Publication date: July 18, 2024
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Marian Verhelst, Yossi Tsfati, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 12009875
    Abstract: Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including an antenna array and processing circuitry coupled to the antenna array. The processing circuitry is configured to initialize a beam tracking algorithm based on received signals received at the antenna array, wherein antenna phases used in the beam tracking are bound by an upper phase limit and a lower phase limit, to generate a beam tracking result. The processing circuitry is further configured to generate a calibration vector based on the beam tracking result and receive subsequent transmissions using a codebook adapted based on the calibration vector.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 11, 2024
    Assignee: Intel Corporation
    Inventors: Oner Orhan, Hosein Nikopour, Shilpa Talwar, Dor Shaviv, Roya Doostnejad, Adesoji J. Sajuyigbe
  • Patent number: 11956104
    Abstract: Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including one or more antennas configured to receive an RF signal and an ADC system. The ADC system includes a 1-bit ADC configured to receive the RF signal, and an ADC controller circuitry configured to measure a number of positive samples in the received RF signal for a plurality of thresholds of the 1-bit ADC, estimate receive signal power associated with the received RF signal based on the measured number of positive samples, determine a direct current (DC) offset in the received RF signal using the estimated received signal power, and adjust the received RF signal based on the determined DC offset.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Oner Orhan, Hosein Nikopour, Mehnaz Rahman, Ivan Simoes Gaspar, Shilpa Talwar, Stefano Pellerano, Claudio Da Silva, Namyoon Lee, Yo Seb Jeon, Eren Sasoglu
  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11956001
    Abstract: A mobile communication device that is configured to cancel interference within received millimeter wave band signals. The device includes a receiver circuit that is configured to receive a millimeter wave band signal, adjust gain provided to the millimeter wave band signal at a first amplifier, cancel interference in millimeter wave band signal after gain is adjusted by the first amplifier, and adjust gain provided to the millimeter wave band signal at a second amplifier after interference is cancelled.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: April 9, 2024
    Assignee: Apple Inc.
    Inventors: Mikhail T. Galeev, Oner Orhan, Arnaud Lucres Amadjikpe, Benjamin Grewell, Navid Naderializadeh, Hosein Nikopour, Susruth Sudhakaran, Shilpa Talwar, Liang Xian
  • Patent number: 11943022
    Abstract: Systems and methods of beamforming and improving mmWave communications for drones are described. Multiple RF chains are used to adapt the main beam to track changes without the use of pilot signals. To reduce interference, interfering signal power is eliminated by optimizing a non-Gaussian measure to extract the interferers. The AoA of signals from a target drone on neighbouring drones and location of the neighbouring drones and base stations are used to independently corroborate the location reported by the target drone. The base station provides additional synchronization signals below 6 GHz and restricts the search/measurement space in the vertical direction. The inherent sparse structure above 6 GHz is exploited by applying different beamformers on a sounding signal and estimating the AoA and impulse response. Variations of fully digital and hybrid beamforming architectures for multi-cell DL sync and CRS measurement are described.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Venkatesan Nallampatti Ekambaram, Yang-Seok Choi, Junyoung Nam, Feng Xue, Shu-ping Yeh, Hosein Nikopour, Shilpa Talwar, Jan Schreck, Nageen Himayat, Sagar Dhakal
  • Publication number: 20240073796
    Abstract: A circuit arrangement includes a preprocessing circuit configured to obtain context information related to a user location, a learning circuit configured to determine a predicted user movement based on context information related to a user location to obtain a predicted route and to determine predicted radio conditions along the predicted route, and a decision circuit configured to, based on the predicted radio conditions, identify one or more first areas expected to have a first type of radio conditions and one or more second areas expected to have a second type of radio conditions different from the first type of radio conditions and to control radio activity while traveling on the predicted route according to the one or more first areas and the one or more second areas.
    Type: Application
    Filed: September 7, 2023
    Publication date: February 29, 2024
    Inventors: Shahrnaz AZIZI, Biljana BADIC, John BROWNE, Dave CAVALCANTI, Hyung-Nam CHOI, Thorsten CLEVORN, Ajay GUPTA, Maruti GUPTA HYDE, Ralph HASHOLZNER, Nageen HIMAYAT, Simon HUNT, Ingolf KARLS, Thomas KENNEY, Yiting LIAO, Christopher MACNAMARA, Marta MARTINEZ TARRADELL, Markus Dominik MUECK, Venkatesan NALLAMPATTI EKAMBARAM, Niall POWER, Bernhard RAAF, Reinhold SCHNEIDER, Ashish SINGH, Sarabjot SINGH, Srikathyayani SRIKANTESWARA, Shilpa TALWAR, Feng XUE, Zhibin YU, Robert ZAUS, Stefan FRANZ, Uwe KLIEMANN, Christian DREWES, Juergen KREUCHAUF
  • Publication number: 20240046796
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to validate data communicated by a vehicle. An example apparatus an anomaly detector to, in response to data communicated by a vehicle, at least one of compare an estimated speed with a reported speed or compare a location of the vehicle with a reported location. The apparatus including the anomaly detector further to generate an indication of the vehicle in response to the comparison. The apparatus further includes a notifier to discard data sent by the vehicle and notify surrounding vehicles of the data communicated by the vehicle.
    Type: Application
    Filed: August 15, 2023
    Publication date: February 8, 2024
    Inventors: Liuyang Yang, Yair Yona, Moreno Ambrosin, Xiruo Liu, Hosein Nikopour, Shilpa Talwar, Kathiravetpillai Sivanesan, Sridhar Sharma, Debabani Choudhury, Kuilin Clark Chen, Jeffrey Ota, Justin Gottschlich