Patents by Inventor Shilpa Talwar

Shilpa Talwar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230138578
    Abstract: A circuit arrangement includes a preprocessing circuit configured to obtain context information related to a user location, a learning circuit configured to determine a predicted user movement based on context information related to a user location to obtain a predicted route and to determine predicted radio conditions along the predicted route, and a decision circuit configured to, based on the predicted radio conditions, identify one or more first areas expected to have a first type of radio conditions and one or more second areas expected to have a second type of radio conditions different from the first type of radio conditions and to control radio activity while traveling on the predicted route according to the one or more first areas and the one or more second areas.
    Type: Application
    Filed: December 16, 2022
    Publication date: May 4, 2023
    Inventors: Shahrnaz AZIZI, Biljana BADIC, John BROWNE, Dave CAVALCANTI, Hyung-Nam CHOI, Thorsten CLEVORN, Ajay GUPTA, Maruti GUPTA HYDE, Ralph HASHOLZNER, Nageen HIMAYAT, Simon HUNT, Ingolf KARLS, Thomas KENNEY, Yiting LIAO, Christopher MACNAMARA, Marta MARTINEZ TARRADELL, Markus MUECK, Venkatesan NALLAMPATTI EKAMBARAM, Niall POWER, Bernhard RAAF, Reinhold SCHNEIDER, Ashish SINGH, Sarabjot SINGH, Srikathyayani SRIKANTESWARA, Shilpa TALWAR, Feng XUE, Zhibin YU, Robert ZAUS, Stefan FRANZ, Uwe KLIEMANN, Christian DREWES, Juergen KREUCHAUF
  • Publication number: 20230093673
    Abstract: A computing node to implement an RL management entity in an NG wireless network includes a NIC and processing circuitry coupled to the NIC. The processing circuitry is configured to generate a plurality of network measurements for a corresponding plurality of network functions. The functions are configured as a plurality of ML models forming a multi-level hierarchy. Control signaling from an ML model of the plurality is decoded, the ML model being at a predetermined level (e.g., a lowest level) in the hierarchy. The control signaling is responsive to a corresponding network measurement and at least second control signaling from a second ML model at a level that is higher than the predetermined level. A plurality of reward functions is generated for training the ML models, based on the control signaling from the MLO model at the predetermined level in the multi-level hierarchy.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Vasuki Narasimha Swamy, Hosein Nikopour, Oner Orhan, Shilpa Talwar
  • Publication number: 20230072769
    Abstract: Disclosed embodiments generally relate to edge-based multi-Radio Access Technology (RAT) traffic management (TM) solutions to support delay-sensitive traffic over heterogeneous networks. Embodiments include delay-aware TM implementations that split and/or steer network traffic across different RATs for the edge network control plane. Embodiments also include utilization threshold-based implementations to achieve delay-aware multi-path TM at the network's edge. The multi-path TM includes multi-RAT, multi-access, or multi-connectivity traffic routes. Embodiments include strategies to sort users (or devices) for making multi-RAT traffic distribution decisions and to determinate the utilization thresholds. Embodiments also include message exchange mechanisms or learning utilization thresholds and other useful system properties. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: March 9, 2023
    Inventors: Shu-ping YEH, Jingwen BAI, Jing ZHU, Menglei ZHANG, Shilpa TALWAR
  • Publication number: 20230068386
    Abstract: The apparatus of an edge computing node, a system, a method and a machine-readable medium. The apparatus includes a processor to perform rounds of federated machine learning training including: processing client reports from a plurality of clients of the edge computing network; selecting a candidate set of clients from the plurality of clients for an epoch of the federated machine learning training; causing a global model to be sent to the candidate set of clients; and performing the federated machine learning training on the candidate set of clients. The processor may perform rounds of federated machine learning training including: obtaining coded training data from each of the selected clients; and performing machine learning training on the coded training data.
    Type: Application
    Filed: December 26, 2020
    Publication date: March 2, 2023
    Applicant: Intel Corporation
    Inventors: Mustafa Riza Akdeniz, Arjun Anand, Nageen Himayat, Amir S. Avestimehr, Ravikumar Balakrishnan, Prashant Bhardwaj, Jeongsik Choi, Yang-Seok Choi, Sagar Dhakal, Brandon Gary Edwards, Saurav Prakash, Amit Solomon, Shilpa Talwar, Yair Eliyahu Yona
  • Publication number: 20230024218
    Abstract: A mobile communication device that is configured to cancel interference within received millimeter wave band signals. The device includes a receiver circuit that is configured to receive a millimeter wave band signal, adjust gain provided to the millimeter wave band signal at a first amplifier, cancel interference in millimeter wave band signal after gain is adjusted by the first amplifier, and adjust gain provided to the millimeter wave band signal at a second amplifier after interference is cancelled.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 26, 2023
    Inventors: Mikhail T. Galeev, Oner Orhan, Arnaud Lucres Amadjikpe, Benjamin Grewell, Navid Naderi, Hosein Nikopour, Susruth Sudhakaran, Shilpa Talwar, Liang Xian
  • Publication number: 20220416868
    Abstract: Various embodiments herein provide techniques for reducing computational complexity in multiple input multiple output (MIMO, e.g., massive MIMO (mMIMO)) communications, such as efficient decomposition of a channel covariance matrix. Embodiments enable accurate mMIMO channel estimation with relatively low computational complexity compared with prior techniques. Additionally, embodiments may provide efficient beamforming and/or spatial compression. Other embodiments may be described and claimed.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 29, 2022
    Inventors: Jan Schreck, Nicholas Whinnett, Thushara Hewavithana, Yang-Seok Choi, Shilpa Talwar
  • Publication number: 20220407549
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Patent number: 11528066
    Abstract: Methods, apparatus, and computer-readable media are described to use multi-finger beamforming for multimeter wave communications. A base station associates with first and second user equipment. Weight sum rates are determined for the user equipment. Transmissions are scheduled to the user equipment based on the weight sum rates. Data is encoded for the first user equipment and transmitted based on the schedule. Data is encoded for the second user equipment and transmitted based on the schedule. The transmissions are multiplexed in the power domain.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Oner Orhan, Ehsan Aryafar, Brent Carlton, Nageen Himayat, Christopher Hull, Navid Naderializadeh, Hosein Nikopour, Stefano Pellerano, Mustafijur Rahman, Shilpa Talwar, Jing Zhu
  • Publication number: 20220393913
    Abstract: Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including one or more antennas configured to receive an RF signal and an ADC system. The ADC system includes a 1-bit ADC configured to receive the RF signal, and an ADC controller circuitry configured to measure a number of positive samples in the received RF signal for a plurality of thresholds of the 1-bit ADC, estimate receive signal power associated with the received RF signal based on the measured number of positive samples, determine a direct current(DC) offset in the received RF signal using the estimated received signal power, and adjust the received RF signal based on the determined DC offset.
    Type: Application
    Filed: December 26, 2019
    Publication date: December 8, 2022
    Inventors: Oner Orhan, Hosein Nikopour, Mehnaz Rahman, Ivan Simoes Gaspar, Shilpa Talwar, Stefano Pellerano, Claudio Da Silva, Namyoon Lee, Yo Seb Jeon, Eren Sasoglu
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220369322
    Abstract: Devices and methods of providing joint scheduling in a full-duplex LTE system are generally described. The UE measures intra-cell interference at the UE caused by a UL transmission from each intra-cell UE, calculates a ratio of the intra-cell interference over an average inter-cell interference, determines whether the intra-cell UE is an aggressor or non-aggressor based on whether the ratio exceeds a threshold, transmits at least some of the determinations to the eNB as feedback, and communicates with the eNB based on a schedule that is dependent on the feedback such that the UE is neither an aggressor nor is subject to interference from aggressors. The schedule may also be based on wideband CQI feedback based on a ratio of an average overall DL interference plus noise over the average inter-cell interference plus noise and/or subband. CQI feedback based on SINR measurements.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Shu-Ping Yeh, Jingwen Bai, Sung-En Chiu, Ping Wang, Feng Xue, Yang-Seok Choi, Shilpa Talwar
  • Publication number: 20220353652
    Abstract: A communication device for multi-radio access technology (RAT) communications includes one or more processors and a plurality of transceivers. Each transceiver is configured to operate in at least one RAT of a plurality of RATs. The processors are configured to establish connection with a second communication device using a first transceiver of the plurality of transceivers and a first RAT of the plurality of RATs. A first data stream associated with a communication link connected to the second communication device and a third communication device is receive via a convergence function at the second communication device. The communication link uses a second RAT of the plurality of RATs. A code sequence is applied to a second data stream to generate an encoded second data stream, which is transmitted to the third communication device via a second communication link established based on information received via the first data stream.
    Type: Application
    Filed: February 23, 2022
    Publication date: November 3, 2022
    Inventors: Stefan Fechtel, Kilian Peter Anton Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Publication number: 20220353650
    Abstract: Disclosed herein is a communication device for vehicular radio communications. The communication device includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices. The one or more processors also determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology. The one or more processors also transmit the channel resource allocation to the plurality of vehicular communication devices.
    Type: Application
    Filed: November 26, 2021
    Publication date: November 3, 2022
    Inventors: Carlos ALDANA, Biljana BADIC, Dave CAVALCANTI, Debabani CHOUDHURY, Christian DREWES, Jong-Kae FWU, Bertram GUNZELMANN, Nageen HIMAYAT, Ingolf KARLS, Duncan KITCHIN, Markus Dominik MUECK, Bernhard RAAF, Domagoj SIPRAK, Harry SKINNER, Christopher STOBART, Shilpa TALWAR, Zhibin YU
  • Publication number: 20220345232
    Abstract: Millimeter-wave (mmWave) and sub-mmWave technology, apparatuses, and methods that relate to transceivers and receivers for wireless communications are described. The various aspects include an apparatus of a communication device including an antenna array and processing circuitry coupled to the antenna array. The processing circuitry is configured to initialize a beam tracking algorithm based on received signals received at the antenna array, wherein antenna phases used in the beam tracking are bound by an upper phase limit and a lower phase limit, to generate a beam tracking result. The processing circuitry is further configured to generate a calibration vector based on the beam tracking result and receive subsequent transmissions using a codebook adapted based on the calibration vector.
    Type: Application
    Filed: December 27, 2019
    Publication date: October 27, 2022
    Inventors: Oner Orhan, Hosein Nikopour, Shilpa Talwar, Dor Shaviv, Roya Doostnejad, Adesoji J. Sajuyigbe
  • Publication number: 20220337297
    Abstract: An apparatus, method and computer readable medium for special thermal density reduction by antenna thinning. A system comprises N transmit/receive (TX/RX) chains, where each TX/RX chain comprises an RFFE and each RFFE comprises one or more thermal sensors configured to measure heat in the RFFE. An antenna array coupled to the plurality of TX/RX chains. A codebook that comprises a plurality of code words configured to respond to real-time heat measurements from the thermal sensors in each TX/RX chain is configured to switch off selected TX/RX chains to reduce thermal density at the antenna array while maintaining M RFFEs switched on, where M<N and the desired beamforming gain is 10log10(M).
    Type: Application
    Filed: May 26, 2022
    Publication date: October 20, 2022
    Inventors: Oner ORHAN, Brent ELLIOTT, Hosein NIKOPOUR, Eren SASOGLU, Shilpa TALWAR
  • Publication number: 20220302940
    Abstract: A mobile communication device that is configured to cancel interference within received millimeter wave band signals. The device includes a receiver circuit that is configured to receive a millimeter wave band signal, adjust gain provided to the millimeter wave band signal at a first amplifier, cancel interference in millimeter wave band signal after gain is adjusted by the first amplifier, and adjust gain provided to the millimeter wave band signal at a second amplifier after interference is cancelled.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 22, 2022
    Inventors: Mikhail T. Galeev, Oner Orhan, Arnaud Lucres Amadjikpe, Benjamin Grewell, Navid Naderi, Hosein Nikopour, Susruth Sudhakaran, Shilpa Talwar, Liang Xian
  • Patent number: 11444645
    Abstract: A receiver circuit associated with a communication device is disclosed. The receiver circuit comprises a digital data compression circuit configured to receive a plurality of digital receive signals derived from a plurality of analog receive signals respectively associated with the receiver circuit. The digital data compression circuit is further configured to compress the plurality of digital receive signals to form one or more compressed digital data signals based thereon, to be provided to an input output (I/O) interface associated therewith. In some embodiments, a compressed digital signal dimension associated with the one or more compressed digital data signals is less than a digital signal dimension associated with the plurality of digital receive signals.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 13, 2022
    Assignee: Apple Inc.
    Inventors: Oner Orhan, Hosein Nikopour, Peter Sagazio, Farhana Sheikh, Junyoung Nam, Shilpa Talwar
  • Patent number: 11423254
    Abstract: Systems, apparatuses, methods, and computer-readable media are provided for load partitioning in distributed machine learning (ML) training using heterogeneous compute nodes in a heterogeneous computing environment, where the heterogeneous compute nodes are connected to a master node via respective wireless links. ML computations are performed by individual heterogeneous compute nodes on respective load partitions. The ML computations are balanced across the heterogeneous compute nodes based on knowledge of respective computational and link parameters of the heterogeneous compute nodes. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Saurav Prakash, Sagar Dhakal, Yair Yona, Nageen Himayat, Shilpa Talwar
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11419124
    Abstract: Devices and methods of providing joint scheduling in a full-duplex LTE system are generally described. The UE measures intra-cell interference at the UE caused by a UL transmission from each intra-cell UE, calculates a ratio of the intra-cell interference over an average inter-cell interference, determines whether the intra-cell UE is an aggressor or non-aggressor based on whether the ratio exceeds a threshold, transmits at least some of the determinations to the eNB as feedback, and communicates with the eNB based on a schedule that is dependent on the feedback such that the UE is neither an aggressor nor is subject to interference from aggressors. The schedule may also be based on wideband CQI feedback based on a ratio of an average overall DL interference plus noise over the average inter-cell interference plus noise and/or subband CQI feedback based on SINR measurements.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Shu-Ping Yeh, Jingwen Bai, Sung-En Chiu, Ping Wang, Feng Xue, Yang-Seok Choi, Shilpa Talwar