Patents by Inventor Shinan Wang

Shinan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150235899
    Abstract: Provided is a method of forming a through wiring, including forming a first insulating film on a first surface and a second surface of a substrate; forming a through hole to pass through the first insulating film formed on the first surface side and the substrate; forming a second insulating film formed from a material different from that of the first insulating film on an inner wall of the through hole; forming a conductive film on the first insulating film formed on the second surface; forming an opening in the first insulating film by processing the first insulating film formed on the second surface; and filling an inner portion of the through hole with a conductive material by electrolytic plating using the conductive film exposed at the bottom portion of the through hole as a seed layer.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 20, 2015
    Inventors: Shinan Wang, Hideshi Kawasaki
  • Publication number: 20150183634
    Abstract: The present inventions provide a capacitive transducer that can reduce film damage on a substrate surface on a vibration film side due to a difference in thermal expansion coefficient between a through wiring and a substrate and a method of manufacturing the same. The capacitive transducer consists of a plurality of cells with each cell comprising a first electrode and a vibration film on a first surface side of a substrate having a through wiring that penetrates the substrate from a first surface to a second surface of the substrate, the vibration film including a second electrode that is formed with a gap from the first electrode. A holding member that holds a leading end of the through wiring is provided on the first surface side of the substrate.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 2, 2015
    Inventors: Shinan Wang, Shinichiro Watanabe
  • Patent number: 9003620
    Abstract: A process for producing a liquid ejection head having a piezoelectric body provided with an ejection orifice for ejecting liquid and a pressure chamber communicating therewith for retaining the liquid, wherein an electrode is formed on an inner wall surface of the pressure chamber to deform the pressure chamber by piezoelectric action caused by applying voltage to the electrode to eject the liquid, comprising providing the piezoelectric body in which a surface thereof having the ejection orifice has an arithmetic mean roughness of 0.1-1 ?m, forming a dry film resist pattern on the surface of the piezoelectric body so as to expose the ejection orifice and a linear region connected thereto, and forming a metal thin film pattern being connected to the electrode on the inner wall surface and continuously extending from the inner wall surface to the linear region by using the dry film resist pattern as a mask.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: April 14, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shinan Wang, Toru Nakakubo, Hirotaka Sekiguchi
  • Publication number: 20150072521
    Abstract: A microstructure manufacturing method includes forming a first insulating film on an Si substrate, exposing an Si surface by removing a part of the first insulating film, forming a recessed portion by etching the Si substrate from the exposed Si surface, forming a second insulating film on a sidewall and a bottom of the recessed portion, forming an Si exposed surface by removing at least a part of the second insulating film formed on the bottom of the recessed portion, and filling the recessed portion with a metal from the Si exposed surface by electrolytic plating.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: Shinan Wang, Takashi Nakamura, Takayuki Teshima, Yutaka Setomoto, Shinichiro Watanabe
  • Publication number: 20150060397
    Abstract: A method of manufacturing an ejection orifice member includes: preparing a substrate including a first layer, a second layer, and a third layer, the first layer protruding in a first direction crossing a principal surface of the substrate, the second and third layers being formed on the first direction side of the first layer, the preparing a substrate including forming the second layer to follow a contour of a first direction side surface of the first layer, and then forming the third layer on a surface of the second layer which protrudes on the first direction side; performing plating using the second layer as a seed to form a fourth layer on the first direction side of the second layer; removing the third layer from the fourth layer to form a hole as the ejection orifice in the fourth layer; and thinning the fourth layer at least around the hole.
    Type: Application
    Filed: August 6, 2014
    Publication date: March 5, 2015
    Inventors: Shinan Wang, Yasuto Kodera, Yasuyuki Tamura
  • Patent number: 8950850
    Abstract: A liquid ejection head has a plurality of pressure chambers each communicating with an ejection port at one end and with an ink supply port at the other end. Each of the pressure chambers has lateral walls formed by piezoelectric elements and configured so as to eject ink from the corresponding ejection port as a result of a capacity change of the pressure chamber due to an expansion or contraction of the piezoelectric elements. The liquid ejection head is constituted by a plate-shaped piezoelectric portion and a plurality of column-shaped piezoelectric portions arranged thereon. The plate-shaped piezoelectric portion has a plurality of holes and a plurality of through holes located around the holes. Each of the column-shaped piezoelectric portions has a hollow section. Each hole of the plate-shaped piezoelectric portion and the hollow section of the corresponding column-shaped piezoelectric portion form a pressure chamber.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 10, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinan Wang
  • Patent number: 8908274
    Abstract: A microstructure manufacturing method includes: preparing a mold having on a front side thereof a plurality of fine structures, with conductivity being imparted to a bottom portion between the plurality of fine structures; forming a first plating layer between the plurality of fine structures by plating the bottom portion; and forming a second plating layer of larger stress than the first plating layer on the first plating layer between the plurality of fine structures, wherein the stress of the second plating layer is used to curve a back side surface of the mold.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takayuki Teshima, Shinan Wang, Yutaka Setomoto, Takashi Nakamura
  • Patent number: 8895934
    Abstract: A microstructure manufacturing method includes forming a first insulating film on an Si substrate, exposing an Si surface by removing a part of the first insulating film, forming a recessed portion by etching the Si substrate from the exposed Si surface, forming a second insulating film on a sidewall and a bottom of the recessed portion, forming an Si exposed surface by removing at least a part of the second insulating film formed on the bottom of the recessed portion, and filling the recessed portion with a metal from the Si exposed surface by electrolytic plating.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: November 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shinan Wang, Takashi Nakamura, Takayuki Teshima, Yutaka Setomoto, Shinichiro Watanabe
  • Patent number: 8857953
    Abstract: A liquid ejection head includes a piezoelectric block body having a plurality of pressure chambers arranged two-dimensionally to face respective ejection ports, a plurality of air chambers arranged adjacently relative to the plurality of pressure chambers, and a plurality of flow channels arranged along the pressure chambers. The pressure chambers are deformed by expansion and contraction of piezoelectric members disposed between the pressure chambers and the air chambers so as to drive the liquid stored therein to flow toward the ejection ports. A connection flow channel is provided at the ejection port side of the piezoelectric block body so as to make each of the pressure chambers communicate with at least one of the flow channels for partial recirculation of the ink.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 14, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshio Suzuki, Shinan Wang, Toru Nakakubo, Manabu Sueoka, Tsunenori Soma, Ryota Kashu
  • Patent number: 8784591
    Abstract: A process for producing a liquid ejection head includes a provision step of providing a piezoelectric substrate, and a first and a second support substrate for supporting the piezoelectric substrate; a bonding step of bonding one surface of the first support substrate to one principal surface of two principal surfaces of the piezoelectric substrate; a groove forming step of forming a groove in the other principal surface of the two principal surfaces of the piezoelectric substrate; an electrode forming step of forming a first electrode on at least one surface of a lateral surface of the groove, a bottom surface of the groove and the other principal surface remaining after the groove is formed; a joining step of joining one surface of the second support substrate to the other principal surface of the piezoelectric substrate; and a separation step of separating the first support substrate from the piezoelectric substrate.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: July 22, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinan Wang
  • Publication number: 20130342613
    Abstract: A liquid ejection head has a plurality of pressure chambers each communicating with an ejection port at one end and with an ink supply port at the other end. Each of the pressure chamber has lateral walls formed by piezoelectric elements and configured so as to eject ink from the corresponding ejection port as a result of a capacity change of the pressure chamber due to an expansion or contraction of the piezoelectric elements. The liquid ejection head is constituted by a plate-shaped piezoelectric portion and a plurality of column-shaped piezoelectric portions arranged thereon. The plate-shaped piezoelectric portion has a plurality of holes and a plurality of through holes located around the holes. Each of the column-shaped piezoelectric portions has a hollow section. Each hole of the plate-shaped piezoelectric portion and the hollow section of the corresponding column-shaped piezoelectric portion form a pressure chamber.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 26, 2013
    Inventor: Shinan Wang
  • Publication number: 20130340219
    Abstract: A process for producing a liquid ejection head having a piezoelectric body provided with an ejection orifice for ejecting liquid and a pressure chamber communicating therewith for retaining the liquid, wherein an electrode is formed on an inner wall surface of the pressure chamber to deform the pressure chamber by piezoelectric action caused by applying voltage to the electrode to eject the liquid, comprising providing the piezoelectric body in which a surface thereof having the ejection orifice has an arithmetic mean roughness of 0.1-1 ?m, forming a dry film resist pattern on the surface of the piezoelectric body so as to expose the ejection orifice and a linear region connected thereto, and forming a metal thin film pattern being connected to the electrode on the inner wall surface and continuously extending from the inner wall surface to the linear region by using the dry film resist pattern as a mask.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 26, 2013
    Inventors: Shinan Wang, Toru Nakakubo, Hirotaka Sekiguchi
  • Patent number: 8337712
    Abstract: A method for forming an etching mask comprises irradiating a focused ion beam onto a surface of a substrate and forming an etching mask used for oblique etching including an ion containing portion in the irradiated region. A method for fabricating a three-dimensional structure comprises preparing a substrate, irradiating a focused ion beam onto a surface of the substrate and forming an etching mask including an ion-containing portion in the irradiated region, and dry-etching the substrate from a diagonal direction using the etching mask and forming a plurality of holes.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: December 25, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Tamamori, Masahiko Okunuki, Shinan Wang, Taiko Motoi, Haruhito Ono, Toshiaki Aiba
  • Patent number: 8084365
    Abstract: A method of manufacturing a nano structure by etching, using a substrate containing Si. A focused Ga ion or In ion beam is irradiated on the surface of the substrate containing Si. The Ga ions or the In ions are injected while sputtering away the surface of the substrate so that a layer containing Ga or In is formed on the surface of the substrate. Dry etching by a gas containing fluorine (F) is performed with the layer containing the Ga or the In formed on the surface of the substrate taken as an etching mask, and the nano structure is formed having a pattern of at least 2 ?m tin in depth according to a predetermined line width.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: December 27, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Taiko Motoi, Kenji Tamamori, Shinan Wang, Masahiko Okunuki, Haruhito Ono, Toshiaki Aiba, Nobuki Yoshimatsu
  • Publication number: 20110194673
    Abstract: A microstructure manufacturing method includes: preparing a mold having on a front side thereof a plurality of fine structures, with conductivity being imparted to a bottom portion between the plurality of fine structures; forming a first plating layer between the plurality of fine structures by plating the bottom portion; and forming a second plating layer of larger stress than the first plating layer on the first plating layer between the plurality of fine structures, wherein the stress of the second plating layer is used to curve a back side surface of the mold.
    Type: Application
    Filed: February 8, 2011
    Publication date: August 11, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takayuki Teshima, Shinan Wang, Yutaka Setomoto, Takashi Nakamura
  • Publication number: 20110168908
    Abstract: A microstructure manufacturing method includes forming a first insulating film on an Si substrate, exposing an Si surface by removing a part of the first insulating film, forming a recessed portion by etching the Si substrate from the exposed Si surface, forming a second insulating film on a sidewall and a bottom of the recessed portion, forming an Si exposed surface by removing at least a part of the second insulating film formed on the bottom of the recessed portion, and filling the recessed portion with a metal from the Si exposed surface by electrolytic plating.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 14, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shinan Wang, Takashi Nakamura, Takayuki Teshima, Yutaka Setomoto, Shinichiro Watanabe
  • Patent number: 7902637
    Abstract: A nano structure formed on the surface of a substrate containing Si and having a pattern of at least 2 ?m in depth, in which Ga or In is contained in the surface of the pattern, and the Ga or the In has a concentration distribution that an elemental composition ratio Ga/Si or In/Si of Si and Ga or In detected by an X-ray photoelectron spectroscopy is at least 0.4 atomic percent in the depth direction of the substrate, and the maximum value of the concentration is positioned within 50 nm of the surface of the pattern.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 8, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Taiko Motoi, Kenji Tamamori, Shinan Wang, Masahiko Okunuki, Haruhito Ono, Toshiaki Aiba, Nobuki Yoshimatsu
  • Publication number: 20110042718
    Abstract: A nitride semiconductor layer-containing structure having a configuration in which: the structure includes a laminated structure based on at least two nitride semiconductor layers; the structure includes between the two nitride semiconductor layers in the laminated structure a plurality of voids surrounded by the faces of the walls inclusive of the inner walls of the recessed portions of the asperity pattern formed on the nitride semiconductor layer that is the lower layer of the two nitride semiconductor layers; and crystallinity defect-containing portions to suppress the lateral growth of the nitride semiconductor layer are formed on at least part of the inner walls of the recessed portions to form the voids.
    Type: Application
    Filed: May 25, 2009
    Publication date: February 24, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shinan Wang, Kenji Tamamori
  • Publication number: 20110027998
    Abstract: A method of manufacturing a nano structure by etching, using a substrate containing Si. A focused Ga ion or In ion beam is irradiated on the surface of the substrate containing Si. The Ga ions or the In ions are injected while sputtering away the surface of the substrate so that a layer containing Ga or In is formed on the surface of the substrate. Dry etching by a gas containing fluorine (F) is performed with the layer containing the Ga or the In formed on the surface of the substrate taken as an etching mask, and the nano structure is formed having a pattern of at least 2 ?m tin in depth according to a predetermined line width.
    Type: Application
    Filed: September 13, 2010
    Publication date: February 3, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Taiko Motoi, Kenji Tamamori, Shinan Wang, Masahiko Okunuki, Haruhito Ono, Toshiaki Aiba, Nobuki Yoshimatsu
  • Patent number: 7782918
    Abstract: Provided are a laser apparatus into which a large current can be injected and a production method which enables easy production of the apparatus. A laser apparatus includes a light-emitting region on a substrate, and a periodic refractive index structure containing an i-type material provided at a periphery of the light-emitting region. Another laser apparatus includes a light-emitting region between a first electrode and a second electrode on a substrate, wherein at least one of the first and the second electrodes includes a periodic refractive index structure.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 24, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Tamamori, Shinan Wang