Patents by Inventor Shing-Kuo Wang

Shing-Kuo Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10601391
    Abstract: Devices and processes for preparing devices are described for reducing resonance of spurious waves in a bulk acoustic resonator. A first electrode is coupled to a first side of a piezoelectric layer and a second electrode is coupled to a second side of the piezoelectric layer. The piezoelectric layer is configured to resonate in response to an electrical signal applied between the first electrode and the second electrode. Perforations in the first electrode, the piezoelectric layer and/or the second electrode, and/or posts or beams supporting the second electrode, reduce resonance of spurious waves.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 24, 2020
    Assignee: GLOBAL COMMUNICATION SEMICONDUCTORS, LLC.
    Inventors: Robert B. Stokes, Alvin M. Kong, Liping Daniel Hou, Dae-Jin Hyun, Shing-Kuo Wang
  • Publication number: 20200028482
    Abstract: Devices and processes for preparing devices are described for a bulk acoustic wave resonator. A stack includes a first electrode that is coupled to a first side of a piezoelectric layer and a second electrode that is coupled to a second side of the piezoelectric layer. The stack is configured to resonate in response to an electrical signal applied between the first electrode and the second electrode. A cavity frame is coupled to the first electrode and to the substrate. The cavity frame forms a perimeter around a cavity. Optionally, a heat dissipating frame is formed and coupled to the second electrode. The cavity frame and/or the heat dissipating frame improve the thermal stability of the bulk acoustic resonator.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 23, 2020
    Inventors: Liping D. Hou, Kun-Mao Pan, Shing-Kuo Wang
  • Publication number: 20180138885
    Abstract: Devices and processes for preparing devices are described for reducing resonance of spurious waves in a bulk acoustic resonator. A first electrode is coupled to a first side of a piezoelectric layer and a second electrode is coupled to a second side of the piezoelectric layer. The piezoelectric layer is configured to resonate in response to an electrical signal applied between the first electrode and the second electrode. Perforations in the first electrode, the piezoelectric layer and/or the second electrode, and/or posts or beams supporting the second electrode, reduce resonance of spurious waves.
    Type: Application
    Filed: October 20, 2017
    Publication date: May 17, 2018
    Inventors: Robert B. Stokes, Alvin M. Kong, Liping Daniel Hou, Dae-Jin Hyun, Shing-Kuo Wang
  • Patent number: 9269784
    Abstract: A device includes a semiconductor die. The semiconductor die includes a plurality of semiconductor layers disposed on a GaAs substrate, including a first semiconductor layer having a first band-gap and a second semiconductor layer having a second band-gap. The semiconductor die further includes a contact layer disposed epitaxially upon the first semiconductor layer. The contact layer has a thickness that is less than a critical thickness. The second semiconductor layer is epitaxially disposed upon the contact layer. The contact layer has a third band-gap that is less than the first band-gap and the second band-gap. The semiconductor die further includes a conductive layer disposed upon the contact layer to form an ohmic contact. The conductive layer comprises one or more metal layers compatible with silicon processing techniques.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: February 23, 2016
    Assignee: GLOBAL COMMUNICATION SEMICONDUCTORS, INC.
    Inventors: Yuefei Yang, Shing-Kuo Wang, Liping D. Hou
  • Publication number: 20150054036
    Abstract: A device includes a semiconductor die. The semiconductor die includes a plurality of semiconductor layers disposed on a GaAs substrate, including a first semiconductor layer having a first band-gap and a second semiconductor layer having a second band-gap. The semiconductor die further includes a contact layer disposed epitaxially upon the first semiconductor layer. The contact layer has a thickness that is less than a critical thickness. The second semiconductor layer is epitaxially disposed upon the contact layer. The contact layer has a third band-gap that is less than the first band-gap and the second band-gap. The semiconductor die further includes a conductive layer disposed upon the contact layer to form an ohmic contact. The conductive layer comprises one or more metal layers compatible with silicon processing techniques.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Inventors: Yuefei Yang, Shing-Kuo Wang, Liping D. Hou
  • Patent number: 8716757
    Abstract: A semiconductor device having a tunable capacitance is disclosed, comprising a substrate, a semiconductor base layer comprising a first semiconductor material having a first band-gap, and a plurality of successive semiconductor layers positioned between the substrate and the semiconductor base layer. The plurality of successive semiconductor layers includes a tuning layer comprising a second semiconductor material having a second band-gap larger than the first band-gap. Furthermore, the tuning layer has a non-uniform doping profile with doping concentration that varies in accordance with distance from a surface of the tuning layer proximal to the semiconductor base layer. The tunable capacitance of the semiconductor device varies in accordance with an applied voltage between the base layer and one of the successive semiconductor layers.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Global Communication Semiconductors, Inc.
    Inventors: Yuefei Yang, Shing-Kuo Wang
  • Publication number: 20140110761
    Abstract: A semiconductor device having a tunable capacitance is disclosed, comprising a substrate, a semiconductor base layer comprising a first semiconductor material having a first band-gap, and a plurality of successive semiconductor layers positioned between the substrate and the semiconductor base layer. The plurality of successive semiconductor layers includes a tuning layer comprising a second semiconductor material having a second band-gap larger than the first band-gap. Furthermore, the tuning layer has a non-uniform doping profile with doping concentration that varies in accordance with distance from a surface of the tuning layer proximal to the semiconductor base layer. The tunable capacitance of the semiconductor device varies in accordance with an applied voltage between the base layer and one of the successive semiconductor layers.
    Type: Application
    Filed: October 31, 2012
    Publication date: April 24, 2014
    Inventors: Yuefei Yang, Shing-Kuo Wang