Patents by Inventor Shingo Eto

Shingo Eto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140172217
    Abstract: A vehicle running control device in a vehicle includes a power connecting/disconnecting device interrupting power transmission between an engine and drive wheels, the vehicle running control device providing free-run control of interrupting the power transmission with the power connecting/disconnecting device and stopping the engine during inertia running, the vehicle running control device being configured to determine a target vehicle deceleration at the start of the free-run control based on a vehicle speed and to estimate an estimated vehicle deceleration when the free-run control is started, before starting the free-run control, and when the estimated vehicle deceleration is closer to the target vehicle deceleration at the start of the free-run control, the free-run control being more easily provided.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Publication number: 20140162839
    Abstract: In a case of engagement when a clutch K0 disposed between an engine 12 and a motor generator MG is engaged during EV running while a release instruction for the clutch K0 is output, drive of the engine 12 is changed such that a rotation speed NE of the engine 12 approaches a rotation speed NMG of the motor generator MG and, therefore, a drag torque of the engine 12 can be suppressed regardless of an engagement state of the clutch K0, and generation of longitudinal acceleration can be suppressed by reducing a slip time of the clutch K0. Therefore, a control device of a hybrid vehicle 10 can be provided that reduces a driver's uncomfortable feeling in a simplified manner in a case of wrong engagement of the clutch K0.
    Type: Application
    Filed: December 24, 2010
    Publication date: June 12, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Patent number: 8690726
    Abstract: A vehicle drive device comprising: an engine; a hydraulic transmission device constituting a portion of a power transmission path between the engine and drive wheels; and an electric motor, the engine and the hydraulic transmission device disposed to rotate around one axial center, the electric motor disposed with a rotation axial center different from the one axial center, the electric motor coupled to an input-side rotating element of the hydraulic transmission device receiving input of a drive force from the engine, the input-side rotating element being rotatable around the one axial center, the electric motor coupled to the input-side rotating element via an electric motor coupling rotating element coupled relatively non-rotatably to the input-side rotating element, a hydraulic pump rotationally driven by the input-side rotating element of the hydraulic transmission device disposed such that a rotor of the hydraulic pump rotates around the one axial center, and a coupling portion of the electric motor cou
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka
  • Patent number: 8677741
    Abstract: A vehicle driving apparatus includes: a torque converter having a pump vane wheel, a turbine vane wheel, and a stator vane wheel, the stator vane wheel rotatably disposed between the turbine vane wheel and the pump vane wheel; an electric motor that drives the stator vane wheel; a 25 first connecting and disconnecting means capable of connecting and disconnecting the electric motor and the stator vane wheel to/from each other; and a second connecting and disconnecting means capable of connecting and disconnecting the electric motor and a output shaft to/from each other.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: March 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hirofumi Ota, Koichi Miyamoto, Toshiya Yamashita, Shingo Eto
  • Publication number: 20130331228
    Abstract: It is provided a control device of a hybrid vehicle having an engine, an electric motor, a clutch disposed in a power transmission path between the engine and the electric motor, and a hydraulic power transmission device with a lockup clutch disposed in a power transmission path between the electric motor and drive wheels, the control device being configured to engage the clutch and provide slip control of the lockup clutch when the engine is started from motor running using the electric motor, and to lower an engagement pressure of the lockup clutch as compared to the case of an engine start caused by an acceleration request from a driver if the start of the engine is an engine start caused by a request from a hybrid system.
    Type: Application
    Filed: February 23, 2011
    Publication date: December 12, 2013
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka
  • Publication number: 20130306423
    Abstract: It is provided a vehicle power transmission device having a torque converter and a power transmission mechanism in a power transmission path between an engine and drive wheels, the torque converter including an input-side rotating member disposed with a plurality of pump blades, an output-side rotating member disposed with a plurality of turbine blades receiving a fluid flow from the pump blades, and a stator disposed with a stator blade disposed between the pump blades and the turbine blades, the power transmission mechanism transmitting power input to an input shaft from the torque converter to a subsequent stage, within a circulation flow passage allowing circulation of fluid in the torque converter, a circulation outward passage allowing the fluid to flow toward the inside of the torque converter at the time of the circulation being made up of a gap between the input shaft of the power transmission mechanism and a tubular stator shaft coupled via a one way clutch to the stator, and the stator shaft being
    Type: Application
    Filed: November 24, 2010
    Publication date: November 21, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukihiko Ideshio, Terufumi Miyazaki, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Patent number: 8583335
    Abstract: A control device for a vehicular drive apparatus, includes: a torque converter having a pump wheel, a turbine wheel and a stator wheel rotatably disposed between the turbine wheel and the pump wheel; an electric motor operative to drive and/or apply a brake to the stator wheel; a first connecting/disconnecting means operable to connect/disconnect the electric motor and the stator wheel to and from each other; a second connecting/disconnecting means operable to connect/disconnect the electric motor and an output shaft to and from each other; and mode switching means for switching a first mode in which the first connecting/disconnecting means is held in a connecting state to allow the electric motor to control a rotating state of the stator wheel and a second mode in which the second connecting/disconnecting means is held in a connecting state to enable the electric motor to perform power running and regeneration, depending on a running condition of a vehicle.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 12, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hirofumi Ota, Koichi Miyamoto, Shingo Eto
  • Publication number: 20130284554
    Abstract: It is provided a vehicle power transmission device having a hydraulic power transmission device and a power transmission mechanism in a power transmission path between an engine and drive wheels, the hydraulic power transmission device including an input-side rotating member disposed with a plurality of pump blades and an output-side rotating member disposed with a plurality of turbine blades receiving a fluid flow from the pump blades, the power transmission mechanism transmitting power input to an input shaft from the hydraulic power transmission device to a subsequent stage, the output-side rotating member being coupled by relatively non-rotatable fitting to the input shaft on the power transmission mechanism side relative to the pump blades and the turbine blades in an axial center direction of the hydraulic power transmission device, the hydraulic power transmission device being a torque converter having a stator coupled via a one way clutch to a tubular stator shaft concentric with the input shaft and h
    Type: Application
    Filed: November 24, 2010
    Publication date: October 31, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukihiko Ideshio, Terufumi Miyazaki, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Publication number: 20130288853
    Abstract: It is provided a control device of a hybrid vehicle having a clutch in a power transmission path between an engine and a motor generator, the clutch controlling power transmission through the power transmission path depending on an engagement state, the hybrid vehicle interrupting the power transmission through the power transmission path by releasing the clutch during EV running while only the motor generator is used as a drive source for running, during the EV running while a release instruction for the clutch is output, if the engine being driven, a rotation speed of the engine is maintained within a predetermined rotation speed difference from a rotation speed of the motor generator.
    Type: Application
    Filed: January 12, 2011
    Publication date: October 31, 2013
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Publication number: 20130277163
    Abstract: Providing a vehicle power transmission device including a hydraulic power transmission device and enabling a shorter entire axial length. A vehicle power transmission device 12 includes a torque converter 18 having a rear cover 38 disposed with a plurality of pump blades 40 and a turbine 42 disposed with a plurality of turbine blades 44 receiving a fluid flow from the pump blades 40, and an automatic transmission 20 transmitting power input to an input shaft 48 from the torque converter 18 to the subsequent stage, in a power transmission path between an engine 14 and drive wheels 16. An engine intermittent clutch K0 and a lockup clutch 120 are disposed closer to the engine 14 relative to the turbine blades 44 in the rear cover 38 acting as an outer shell cover and the lockup clutch 120 is made up of a single plate clutch.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukihiko Ideshio, Terufumi Miyazaki, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
  • Publication number: 20130196817
    Abstract: A vehicle drive device comprising: an engine; a hydraulic transmission device constituting a portion of a power transmission path between the engine and drive wheels; and an electric motor, the engine and the hydraulic transmission device disposed to rotate around one axial center, the electric motor disposed with a rotation axial center different from the one axial center, the electric motor coupled to an input-side rotating element of the hydraulic transmission device receiving input of a drive force from the engine, the input-side rotating element being rotatable around the one axial center, the electric motor coupled to the input-side rotating element via an electric motor coupling rotating element coupled relatively non-rotatably to the input-side rotating element, a hydraulic pump rotationally driven by the input-side rotating element of the hydraulic transmission device disposed such that a rotor of the hydraulic pump rotates around the one axial center, and a coupling portion of the electric motor cou
    Type: Application
    Filed: August 4, 2010
    Publication date: August 1, 2013
    Inventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka
  • Patent number: 8430790
    Abstract: A power transmission controlling apparatus of a vehicle includes a clutch capable of connecting/disconnecting power transmission between an engine and a motor/generator, and a torque converter enabling power transmission between the engine or/and the motor/generator and an automatic transmission. When the engine is started by motoring torque with engagement of the clutch during rotation of the motor/generator, the power transmission controlling apparatus sets a torque compensation amount by the motor/generator based on an estimated torque capacity of the clutch, and suppresses torque fluctuations on a power transmission path accompanying engagement of the clutch by power of the motor/generator containing the torque compensation amount. The power transmission controlling apparatus corrects the torque capacity or the torque compensation amount based on input torque of the torque converter.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: April 30, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobufusa Kobayashi, Hideaki Otsubo, Yukihiko Ideshio, Terufumi Miyazaki, Shingo Eto
  • Publication number: 20130035202
    Abstract: A power transmission device has a rigid body that includes a contact portion coming into contact with the first or second friction member and that moves the contact portion from a position of contact with the first or second friction member to a position of no contact with the first and second friction members, an elastic body that applies to the rigid body a force moving the contact portion to a position of contact with the first or second friction member, a first pushing mechanism that applies to the rigid body a pressure of liquid moving the contact portion to a position of contact with the first or second friction member, and a second pushing mechanism that applies to the rigid body a pressure of liquid moving the contact portion to a position of no contact with the first and second friction members.
    Type: Application
    Filed: January 13, 2011
    Publication date: February 7, 2013
    Applicants: AISIN AW CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukihiko Ideshio, Terufumi Miyazaki, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Tetsuya Yamaguchi, Tomohide Suzuki
  • Publication number: 20120316028
    Abstract: A power transmission controlling apparatus of a vehicle includes a clutch capable of connecting/disconnecting power transmission between an engine and a motor/generator, and a torque converter enabling power transmission between the engine or/and the motor/generator and an automatic transmission. When the engine is started by motoring torque with engagement of the clutch during rotation of the motor/generator, the power transmission controlling apparatus sets a torque compensation amount by the motor/generator based on an estimated torque capacity of the clutch, and suppresses torque fluctuations on a power transmission path accompanying engagement of the clutch by power of the motor/generator containing the torque compensation amount. The power transmission controlling apparatus corrects the torque capacity or the torque compensation amount based on input torque of the torque converter.
    Type: Application
    Filed: March 1, 2010
    Publication date: December 13, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobufusa Kobayashi, Hideaki Otsubo, Yukihiko Ideshio, Terufumi Miyazaki, Shingo Eto
  • Patent number: 8246500
    Abstract: A vehicle hybrid driving apparatus that has an engine and an electric motor as drive power sources includes: a hydraulic pressure generation mechanism that generates hydraulic pressure using drive force from the engine; and a planetary gear ratio shift device that has three rotating elements: a first rotating element, a second rotating element, and a third rotating element. The first rotating element is linked to the electric motor so that power transmission therebetween is possible, and is also linked to the engine via a clutch so that power transmission therebetween is possible. The second rotating element is selectively linked to a stationary member via a brake. The third rotating element is linked to an output shaft so that power transmission therebetween is possible. The brake connects the second rotating element and the stationary member when the hydraulic pressure from the hydraulic pressure generation mechanism is not supplied.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: August 21, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Eto, Koichi Miyamoto, Toshihiko Kamiya
  • Patent number: 8187132
    Abstract: When initial control ends, an ECU executes a program that includes the steps of: calculating a return control progression degree; calculating a target amount of change in turbine speed; calculating a feedback gain; calculating a target turbine speed; calculating a deviation between the target turbine speed and turbine speed NT; determining a hydraulic pressure command value; outputting the hydraulic pressure command; and when the turbine speed is synchronized with a first gear synchronization speed, outputting the maximum hydraulic pressure command.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: May 29, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Eto, Yoshio Hasegawa
  • Publication number: 20110010063
    Abstract: A control device for a vehicular drive apparatus, includes: a torque converter having a pump wheel, a turbine wheel and a stator wheel rotatably disposed between the turbine wheel and the pump wheel; an electric motor operative to drive and/or apply a brake to the stator wheel; a first connecting/disconnecting means operable to connect/disconnect the electric motor and the stator wheel to and from each other; a second connecting/disconnecting means operable to connect/disconnect the electric motor and an output shaft to and from each other; and mode switching means for switching a first mode in which the first connecting/disconnecting means is held in a connecting state to allow the electric motor to control a rotating state of the stator wheel and a second mode in which the second connecting/disconnecting means is held in a connecting state to enable the electric motor to perform power running and regeneration, depending on a running condition of a vehicle.
    Type: Application
    Filed: February 6, 2009
    Publication date: January 13, 2011
    Applicant: Toyota Jidoshia Kabushiki Kaisha
    Inventors: Hirofumi Ota, Koichi Miyamoto, Shingo Eto
  • Publication number: 20110005215
    Abstract: A vehicle driving apparatus includes: a torque converter having a pump vane wheel, a turbine vane wheel, and a stator vane wheel, the stator vane wheel rotatably disposed between the turbine vane wheel and the pump vane wheel; an electric motor that drives the stator vane wheel; a 25 first connecting and disconnecting means capable of connecting and disconnecting the electric motor and the stator vane wheel to/from each other; and a second connecting and disconnecting means capable of connecting and disconnecting the electric motor and a output shaft to/from each other.
    Type: Application
    Filed: February 6, 2009
    Publication date: January 13, 2011
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hirofumi Ota, Koichi Miyamoto, Toshiya Yamashita, Shingo Eto
  • Publication number: 20100210415
    Abstract: When initial control ends, an ECU executes a program that includes the steps of: calculating a return control progression degree; calculating a target amount of change in turbine speed; calculating a feedback gain; calculating a target turbine speed; calculating a deviation between the target turbine speed and turbine speed NT; determining a hydraulic pressure command value; outputting the hydraulic pressure command; and when the turbine speed is synchronized with a first gear synchronization speed, outputting the maximum hydraulic pressure command.
    Type: Application
    Filed: September 16, 2008
    Publication date: August 19, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Eto, Yoshio Hasegawa
  • Publication number: 20100130321
    Abstract: A vehicle hybrid driving apparatus that has an engine and an electric motor as drive power sources includes: a hydraulic pressure generation mechanism that generates hydraulic pressure using drive force from the engine; and a planetary gear ratio shift device that has three rotating elements: a first rotating element, a second rotating element, and a third rotating element. The first rotating element is linked to the electric motor so that power transmission therebetween is possible, and is also linked to the engine via a clutch so that power transmission therebetween is possible. The second rotating element is selectively linked to a stationary member via a brake. The third rotating element is linked to an output shaft so that power transmission therebetween is possible. The brake connects the second rotating element and the stationary member when the hydraulic pressure from the hydraulic pressure generation mechanism is not supplied.
    Type: Application
    Filed: November 17, 2009
    Publication date: May 27, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shingo Eto, Koichi Miyamoto, Toshihiko Kamiya