Patents by Inventor Shinjiro Kaneko

Shinjiro Kaneko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6702904
    Abstract: The present invention presents a high tensile strength cold rolled steel sheet having excellent formability, impact resistance and strain age hardening characteristics, and the production thereof. As a specific means, a slab having a composition which contains, by mass %, 0.15% or less of C, 0.02% or less of Al, and 0.0050 to 0.0250% of N at N/Al of 0.3 or higher, and has N in a solid solution state at 0.0010% or more, is first hot rolled at the finish rolling delivery-side temperature of 800° C. or above, and is subsequently coiled at the coiling temperature of 750° C. or below to prepare a hot rolled plate. Then, after cold rolling, the hot rolled plate is continuously cooled at a temperature from the recrystallization temperature to 900° C. at a holding time of 10 to 120 seconds, and is cooled by primary cooling in which the hot rolled plate is cooled to 500° C. or below at a cooling rate of 10 to 300° C.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: March 9, 2004
    Assignee: JFE Steel Corporation
    Inventors: Chikara Kami, Akio Tosaka, Kazunori Osawa, Shinjiro Kaneko, Takuya Yamazaki, Kaneharu Okuda, Takashi Ishikawa
  • Publication number: 20030188811
    Abstract: The present invention presents a high tensile strength cold rolled steel sheet having excellent formability, impact resistance and strain age hardening characteristics, and the production thereof. As a specific means, a slab having a composition which contains, by mass %, 0.15% or less of C, 0.02% or less of Al, and 0.0050 to 0.0250% of N at N/Al of 0.3 or higher, and has N in a solid solution state at 0.0010% or more, is first hot rolled at the finish rolling delivery-side temperature of 800° C. or above, and is subsequently coiled at the coiling temperature of 750° C. or below to prepare a hot rolled plate. Then, after cold rolling, the hot rolled plate is continuously cooled at a temperature from the recrystallization temperature to 900° C. at a holding time of 10 to 120 seconds, and is cooled by primary cooling in which the hot rolled plate is cooled to 500° C. or below at a cooling rate of 10 to 300° C.
    Type: Application
    Filed: January 13, 2003
    Publication date: October 9, 2003
    Applicant: Kawasaki Steel Corporation
    Inventors: Chikara Kami, Akio Tosaka, Kazunori Osawa, Shinjiro Kaneko, Takuya Yamazaki, Kaneharu Okuda, Takashi Ishikawa
  • Publication number: 20030145920
    Abstract: The present invention presents a high tensile strength cold rolled steel sheet having excellent formability, impact resistance and strain age hardening characteristics, and the production thereof. As a specific means, a slab having a composition which contains, by mass %, 0.15% or less of C, 0.02% or less of Al, and 0.0050 to 0.0250% of N at N/Al of 0.3 or higher, and has N in a solid solution state at 0.0010% or more, is first hot rolled at the finish rolling delivery-side temperature of 800° C. or above, and is subsequently coiled at the coiling temperature of 750° C. or below to prepare a hot rolled plate. Then, after cold rolling, the hot rolled plate is continuously cooled at a temperature from the recrystallization temperature to 900° C. at a holding time of 10 to 120 seconds, and is cooled by primary cooling in which the hot rolled plate is cooled to 500° C. or below at a cooling rate of 10 to 300° C.
    Type: Application
    Filed: January 13, 2003
    Publication date: August 7, 2003
    Applicant: Kawasaki Steel Corporation
    Inventors: Chikara Kami, Akio Tosaka, Kazunori Osawa, Shinjiro Kaneko, Takuya Yamazaki, Kaneharu Okuda, Takashi Ishikawa
  • Publication number: 20030047256
    Abstract: The present invention presents a high tensile strength cold rolled steel sheet having excellent formability, impact resistance and strain age hardening characteristics, and the production thereof. As a specific means, a slab having a composition which contains, by mass %, 0.15% or less of C, 0.02% or less of Al, and 0.0050 to 0.0250% of N at N/Al of 0.3 or higher, and has N in a solid solution state at 0.0010% or more, is first hot rolled at the finish rolling delivery-side temperature of 800° C. or above, and is subsequently coiled at the coiling temperature of 750° C. or below to prepare a hot rolled plate. Then, after cold rolling, the hot rolled plate is continuously cooled at a temperature from the recrystallization temperature to 900° C. at a holding time of 10 to 120 seconds, and is cooled by primary cooling in which the hot rolled plate is cooled to 500° C. or below at a cooling rate of 10 to 300° C.
    Type: Application
    Filed: October 24, 2001
    Publication date: March 13, 2003
    Inventors: Chikara Kami, Akio Tosaka, Kazunori Osawa, Shinjiro Kaneko, Takuya Yamazaki, Kaneharu Okuda, Takashi Ishikawa
  • Patent number: 6425963
    Abstract: High tensile strength hot-rolled steel sheet suitable for use in interior materials for automobiles and a method for producing the same, in which bake hardenability, fatigue resistance, crash resistance, and resistance to room temperature aging are improved, containing 0.01% to 0.12% by weight of carbon, 2.0% by weight or less of silicon, 0.01% to 3.0% by weight of manganese, 0.2% by weight or less of phosphorus, 0.001% to 0.1% by weight of aluminum, and 0.003% to 0.02% by weight of nitrogen and subjected to hot rolling and cooling at a cooling rate of 50° C./s or more within 0.5 second after hot rolling; the hot-rolled steel sheet has a structure including a ferrite having an average grain diameter of 8 &mgr;m or less as a primary phase, the amount of solute Nitrogen ranges from 0.003% to 0.01%, and the ratio, Ngb/Ng, of an average concentration Ngb of nitrogen dissolved in the ferrite grain boundary to an average concentration Ng of nitrogen dissolved in ferrite grains ranges from 100 to 10,000.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: July 30, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Shinjiro Kaneko, Tetsuo Shimizu, Osamu Furukimi