Patents by Inventor Shinobu Yamauchi

Shinobu Yamauchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8958208
    Abstract: A semiconductor device is disclosed that includes an insulation substrate, a metal wiring layer, a semiconductor element, a heat sink, and a stress relaxation member located between the insulation substrate and the heat sink. The heat sink has a plurality of partitioning walls that extend in one direction and are arranged at intervals. The stress relaxation member includes a stress absorbing portion formed by through holes extending through the entire thickness of the stress relaxation member. Each hole is formed such that its dimension along the longitudinal direction of the partitioning walls is greater than its dimension along the arranging direction of the partitioning walls.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 17, 2015
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Shogo Mori, Shinobu Tamura, Shinobu Yamauchi, Taizo Kuribayashi
  • Patent number: 8824144
    Abstract: A power module base includes a heat radiation substrate formed of a high-thermal-conduction material, an insulating substrate joined to an upper surface of the heat radiation substrate, a wiring layer provided on an upper surface of the insulating substrate, and a heat radiation fin joined to a lower surface of the heat radiation substrate. A component attachment plate thicker than the heat radiation substrate and including a through hole for accommodating the insulating substrate is joined to the upper surface of the heat radiation substrate such that the insulating substrate is located within the through hole. This power module base can maintain the upper surface of the component attachment plate flat, and various components for a power module, such as a casing, can be attached onto the component attachment plate.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: September 2, 2014
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Keiji Toh, Shogo Mori, Hideyasu Obara, Nobuhiro Wakabayashi, Shintaro Nakagawa, Shinobu Yamauchi
  • Publication number: 20140140004
    Abstract: A power module includes a power device and a heat sink. The heat sink includes a refrigerant passage in which a cooling medium flows and a corrugated fin body arranged in the refrigerant passage. The refrigerant passage is defined by a surface and a backside, and the power device is disposed in proximity to the surface. The corrugated fin body has crests and troughs that extend in the flow direction of the cooling medium and side walls each of which connects the corresponding one of the crests with the adjacent one of the troughs. Each adjacent pair of the side walls and the corresponding one of the crests or the corresponding one of the troughs arranged between the adjacent side walls form a fin. A guide that extends in the flow direction of the cooling medium and operates to stir the cooling medium is arranged in each of the fins.
    Type: Application
    Filed: February 27, 2013
    Publication date: May 22, 2014
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hidehito KUBO, Masahiko Kimbara, Keiji Toh, Kota Otoshi, Eiji Kono, Katsufumi Tanaka, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Publication number: 20130256867
    Abstract: A semiconductor device is disclosed that includes an insulation substrate, a metal wiring layer, a semiconductor element, a heat sink, and a stress relaxation member located between the insulation substrate and the heat sink. The heat sink has a plurality of partitioning walls that extend in one direction and are arranged at intervals. The stress relaxation member includes a stress absorbing portion formed by through holes extending through the entire thickness of the stress relaxation member. Each hole is formed such that its dimension along the longitudinal direction of the partitioning walls is greater than its dimension along the arranging direction of the partitioning walls.
    Type: Application
    Filed: May 22, 2013
    Publication date: October 3, 2013
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shogo MORI, Shinobu Tamura, Shinobu Yamauchi
  • Patent number: 8472193
    Abstract: A semiconductor device is disclosed that includes an insulation substrate, a metal wiring layer, a semiconductor element, a heat sink, and a stress relaxation member located between the insulation substrate and the heat sink. The heat sink has a plurality of partitioning walls that extend in one direction and are arranged at intervals. The stress relaxation member includes a stress absorbing portion formed by through holes extending through the entire thickness of the stress relaxation member. Each hole is formed such that its dimension along the longitudinal direction of the partitioning walls is greater than its dimension along the arranging direction of the partitioning walls.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 25, 2013
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Shogo Mori, Shinobu Tamura, Shinobu Yamauchi, Taizo Kuribayashi
  • Patent number: 8411438
    Abstract: A heat sink (1) for power module is capable of mounting a power device (101) on at least a surface of the heat sink. The heat sink includes a refrigerant passage (1d) in which cooling medium that dissipates heat generated by the power device (101) flows and a corrugated fin body (1a) arranged in the refrigerant passage (1d). The corrugated fin body (1a) has crests (21b) and troughs (21c) that extend in the flow direction of the cooling medium, and side walls (21a) each of which connects the corresponding one of the crests (21b) with the adjacent one of the troughs (21c). Each adjacent pair of the side walls (21a) and the corresponding one of the crests (21b) or the corresponding one of the troughs (21c) arranged between the adjacent side walls (21a) form a fin (21). Each of the side walls (21a) has a louver (31) that operates to, at least, rotate the cooling medium flowing in the associated fin (21). The heat sink (1) thus has a further improved heat dissipating performance.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 2, 2013
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Hidehito Kubo, Masahiko Kimbara, Keiji Toh, Kota Otoshi, Eiji Kono, Katsufumi Tanaka, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Patent number: 8387685
    Abstract: A heat sink for a power module able to realize a further improvement of heat radiating performance and a further improvement of a mounting property is provided. The heat sink 1 for a power module has a laminating body 20, a first side plate 30 and a second side plate 40. The laminating body 20 has plural flow path plates 21 formed in a plate shape in which plural grooves 23 parallel to each other are concavely arranged on a flat joining face 22. Each groove 23 is set to a parallel flow path 50 parallel to a front face side by laminating each flow path plate 21 by each joining face 22. A portion other than each groove 23 of each joining face 22 forms a heat transfer path 70a to each parallel flow path 50 of a laminating direction. A flow-in path 30a and a flow-out path 40a are formed in the first and second side plates 30, 40. The flow-in path 30a and the flow-out path 40a are joined to side faces 26a, 26b of the laminating body 20, and are communicated with each parallel flow path 50.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: March 5, 2013
    Assignees: Kabushiki Kaisha Toshiba Jidoshokki, Showa Denko K.K.
    Inventors: Masahiko Kimbara, Keiji Toh, Hidehito Kubo, Katsufumi Tanaka, Kota Otoshi, Eiji Kono, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Publication number: 20120182695
    Abstract: A semiconductor device is disclosed that includes an insulation substrate, a metal wiring layer, a semiconductor element, a heat sink, and a stress relaxation member located between the insulation substrate and the heat sink. The heat sink has a plurality of partitioning walls that extend in one direction and are arranged at intervals. The stress relaxation member includes a stress absorbing portion formed by through holes extending through the entire thickness of the stress relaxation member. Each hole is formed such that its dimension along the longitudinal direction of the partitioning walls is greater than its dimension along the arranging direction of the partitioning walls.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 19, 2012
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shogo MORI, Shinobu TAMURA, Shinobu YAMAUCHI, Taizo KURIBAYASHI
  • Publication number: 20120175765
    Abstract: A semiconductor device is disclosed that includes an insulation substrate, a metal wiring layer, a semiconductor element, a heat sink, and a stress relaxation member located between the insulation substrate and the heat sink. The heat sink has a plurality of partitioning walls that extend in one direction and are arranged at intervals. The stress relaxation member includes a stress absorbing portion formed by through holes extending through the entire thickness of the stress relaxation member. Each hole is formed such that its dimension along the longitudinal direction of the partitioning walls is greater than its dimension along the arranging direction of the partitioning walls.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 12, 2012
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Shogo MORI, Shinobu TAMURA, Shinobu YAMAUCHI, Taizo KURIBAYASHI
  • Patent number: 8198539
    Abstract: A heat radiator 1 includes an insulating substrate 3 whose first side serves as a heat-generating-element-mounting side, and a heat sink 5 fixed to a second side of the insulating substrate 3. A metal layer 7 is formed on the second side of the insulating substrate 3 opposite the heat-generating-element-mounting side. A stress relaxation member 4 formed of a high-thermal-conduction material intervenes between the metal layer 7 of the insulating substrate 3 and the heat sink 5 and includes a plate-like body 10 and a plurality of projections 11 formed at intervals on one side of the plate-like body 10. The end faces of the projections 11 of the stress relaxation member 4 are brazed to the metal layer 7, whereas the side of the plate-like body 10 on which the projections 11 are not formed is brazed to the heat sink 5. This heat radiator 1 is low in material cost and exhibits excellent heat radiation performance.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: June 12, 2012
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Kota Otoshi, Eiji Kono, Keiji Toh, Katsufumi Tanaka, Yuichi Furukawa, Shinobu Yamauchi, Ryoichi Hoshino, Nobuhiro Wakabayashi, Shintaro Nakagawa
  • Publication number: 20120113598
    Abstract: A power module base includes a heat radiation substrate formed of a high-thermal-conduction material, an insulating substrate joined to an upper surface of the heat radiation substrate, a wiring layer provided on an upper surface of the insulating substrate, and a heat radiation fin joined to a lower surface of the heat radiation substrate. A component attachment plate thicker than the heat radiation substrate and including a through hole for accommodating the insulating substrate is joined to the upper surface of the heat radiation substrate such that the insulating substrate is located within the through hole. This power module base can maintain the upper surface of the component attachment plate flat, and various components for a power module, such as a casing, can be attached onto the component attachment plate.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 10, 2012
    Applicants: SHOWA DENKO K.K., KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Keiji Toh, Shogo Mori, Hideyasu Obara, Nobuhiro Wakabayashi, Shintaro Nakagawa, Shinobu Yamauchi
  • Patent number: 8102652
    Abstract: A power module base includes a heat radiation substrate formed of a high-thermal-conduction material, an insulating substrate joined to an upper surface of the heat radiation substrate, a wiring layer provided on an upper surface of the insulating substrate, and a heat radiation fin joined to a lower surface of the heat radiation substrate. A component attachment plate thicker than the heat radiation substrate and including a through hole for accommodating the insulating substrate is joined to the upper surface of the heat radiation substrate such that the insulating substrate is located within the through hole. This power module base can maintain the upper surface of the component attachment plate flat, and various components required for a power module, such as a casing, can be attached onto the component attachment plate.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 24, 2012
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Keiji Toh, Shogo Mori, Hideyasu Obara, Nobuhiro Wakabayashi, Shintaro Nakagawa, Shinobu Yamauchi
  • Patent number: 7971636
    Abstract: A heat exchanger for use as an evaporator includes a heat exchange core having a plurality of heat exchange tubes arranged in a left-right direction at a spacing, and a refrigerant turn tank as a lower tank disposed toward a lower end of the heat exchange core. The heat exchange tubes are inserted through respective tube insertion holes formed in the turn tank and joined to the tank. The turn tank has drain grooves each extending from a forwardly or rearwardly outer end of each of the tube insertion holes for discharging condensation water to below the turn tank therethrough. Each of the drain grooves has a bottom extending gradually downward as the bottom extends away from the tube insertion hole. the exchanger is used as the evaporator, the top surface of the turn tank can be drained of water with an improved efficiency.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: July 5, 2011
    Assignee: Showa Denko K.K.
    Inventors: Naohisa Higashiyama, Sumitaka Watanabe, Shinobu Yamauchi
  • Patent number: 7923833
    Abstract: A semiconductor module 10 includes a ceramic substrate having a front surface on which a semiconductor element 12 is mounted and a rear surface on the opposite side of the front surface, a front metal plate 15 joined to the front surface, a rear metal plate 16 joined to the rear surface, and a heat sink 13 joined to the rear metal plate 16. The rear metal plate 16 includes a joint surface 16b that faces the heat sink 13. The joint surface 16b includes a joint area and a non-joint area. The non-joint area includes recesses 18 which extend in the thickness direction of the rear metal plate 16. The joint area of the rear metal plate 16 is in a range from 65% to 85% of the total area of the joint surface 16b on the rear metal plate 16. As a result, excellent heat dissipating performance can be achieved while occurrence of distortion and cracking due to thermal stress is prevented.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 12, 2011
    Assignees: Showa Denko K.K., Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Yuichi Furukawa, Shinobu Yamauchi, Nobuhiro Wakabayashi, Shintaro Nakagawa, Keiji Toh, Eiji Kono, Kota Otoshi, Katsufumi Tanaka
  • Patent number: 7775267
    Abstract: An evaporator 1 comprises a heat exchange core 10 comprising a plurality of tube groups 5 arranged in rows as spaced forwardly or rearwardly of the evaporator and each comprising a plurality of heat exchange tubes 4 arranged in parallel at a spacing laterally of the evaporator, and a lower tank 3 disposed at a lower end of the core 10 and having connected thereto lower ends of the heat exchange tubes 4 providing the tube groups 5. The lower tank 3 has a top surface 3a, front and rear opposite side surfaces 3b and a bottom surface 3c. The lower tank 3 is provided in each of front and rear opposite side portions thereof with grooves 29 formed between respective laterally adjacent pairs of heat exchange tubes 4 and extending from an intermediate portion of the top surface 3a with respect to the forward or rearward direction to the side surface 3b for causing water condensate to flow therethrough.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: August 17, 2010
    Assignee: Showa Denko K.K.
    Inventors: Naohisa Higashiyama, Sumitaka Watanabe, Shinobu Yamauchi, Daisuke Mori
  • Publication number: 20100002397
    Abstract: A power module base includes a heat radiation substrate formed of a high-thermal-conduction material, an insulating substrate joined to an upper surface of the heat radiation substrate, a wiring layer provided on an upper surface of the insulating substrate, and a heat radiation fin joined to a lower surface of the heat radiation substrate. A component attachment plate thicker than the heat radiation substrate and including a through hole for accommodating the insulating substrate is joined to the upper surface of the heat radiation substrate such that the insulating substrate is located within the through hole. This power module base can maintain the upper surface of the component attachment plate flat, and various components required for a power module, such as a casing, can be attached onto the component attachment plate.
    Type: Application
    Filed: March 8, 2007
    Publication date: January 7, 2010
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, SHOWA DENKO K.K.
    Inventors: Keiji Toh, Shogo Mori, Hideyasu Obara, Nobuhiro Wakabayashi, Shintaro Nakagawa, Shinobu Yamauchi
  • Publication number: 20100002399
    Abstract: A semiconductor device is disclosed that includes an insulation substrate, a metal wiring layer, a semiconductor element, a heat sink, and a stress relaxation member located between the insulation substrate and the heat sink. The heat sink has a plurality of partitioning walls that extend in one direction and are arranged at intervals. The stress relaxation member includes a stress absorbing portion formed by through holes extending through the entire thickness of the stress relaxation member. Each hole is formed such that its dimension along the longitudinal direction of the partitioning walls is greater than its dimension along the arranging direction of the partitioning walls.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 7, 2010
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, SHOWA DENKO K.K.
    Inventors: Shogo Mori, Shinobu Tamura, Shinobu Yamauchi, Taizo Kuribayashi
  • Publication number: 20090314474
    Abstract: A heat sink for a power module able to realize a further improvement of heat radiating performance and a further improvement of a mounting property is provided. The heat sink 1 for a power module has a laminating body 20, a first side plate 30 and a second side plate 40. The laminating body 20 has plural flow path plates 21 formed in a plate shape in which plural grooves 23 parallel to each other are concavely arranged on a flat joining face 22. Each groove 23 is set to a parallel flow path 50 parallel to a front face side by laminating each flow path plate 21 by each joining face 22. A portion other than each groove 23 of each joining face 22 forms a heat transfer path 70a to each parallel flow path 50 of a laminating direction. A flow-in path 30a and a flow-out path 40a are formed in the first and second side plates 30, 40. The flow-in path 30a and the flow-out path 40a are joined to side faces 26a, 26b of the laminating body 20, and are communicated with each parallel flow path 50.
    Type: Application
    Filed: April 19, 2006
    Publication date: December 24, 2009
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, SHOWA DENKO K.K.
    Inventors: Masahiko Kimbara, Keiji Toh, Hidehito Kubo, Katsufumi Tanaka, Kota Otoshi, Eiji Kono, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Publication number: 20090302458
    Abstract: A heat sink (1) for power module is capable of mounting a power device (101) on at least a surface of the heat sink. The heat sink includes a refrigerant passage (1d) in which cooling medium that dissipates heat generated by the power device (101) flows and a corrugated fin body (1a) arranged in the refrigerant passage (1d). The corrugated fin body (1a) has crests (21b) and troughs (21c) that extend in the flow direction of the cooling medium, and side walls (21a) each of which connects the corresponding one of the crests (21b) with the adjacent one of the troughs (21c). Each adjacent pair of the side walls (21a) and the corresponding one of the crests (21b) or the corresponding one of the troughs (21c) arranged between the adjacent side walls (21a) form a fin (21). Each of the side walls (21a) has a louver (31) that operates to, at least, rotate the cooling medium flowing in the associated fin (21). The heat sink (1) thus has a further improved heat dissipating performance.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 10, 2009
    Inventors: Hidehito Kubo, Masahiko Kimbara, Keiji Toh, Kota Otoshi, Eiji Kono, Katsufumi Tanaka, Nobuhiro Wakabayashi, Shintaro Nakagawa, Yuichi Furukawa, Shinobu Yamauchi
  • Publication number: 20090200065
    Abstract: A heat radiator 1 includes an insulating substrate 3 whose first side serves as a heat-generating-element-mounting side, and a heat sink 5 fixed to a second side of the insulating substrate 3. A metal layer 7 is formed on the second side of the insulating substrate 3 opposite the heat-generating-element-mounting side. A stress relaxation member 4 formed of a high-thermal-conduction material intervenes between the metal layer 7 of the insulating substrate 3 and the heat sink 5 and includes a plate-like body 10 and a plurality of projections 11 formed at intervals on one side of the plate-like body 10. The end faces of the projections 11 of the stress relaxation member 4 are brazed to the metal layer 7, whereas the side of the plate-like body 10 on which the projections 11 are not formed is brazed to the heat sink 5. This heat radiator 1 is low in material cost and exhibits excellent heat radiation performance.
    Type: Application
    Filed: July 5, 2006
    Publication date: August 13, 2009
    Applicants: Kabushiki Kaisha Toyota Jidoshokki, Showa Denko K.K.
    Inventors: Kota Otoshi, Eiji Kono, Keiji Toh, Katsufumi Tanaka, Yuichi Furukawa, Shinobu Yamauchi, Ryoichi Hoshino, Nobuhiro Wakabayashi, Shintaro Nakagawa