Patents by Inventor Shinya Yamakawa

Shinya Yamakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110189845
    Abstract: A method of manufacturing a semiconductor device in which a stress can be effectively applied from a semiconductor layer having a different lattice constant from a semiconductor substrate to a channel part, whereby carrier mobility can be improved and higher functionality can be achieved.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 4, 2011
    Applicant: SONY CORPORATION
    Inventor: Shinya Yamakawa
  • Patent number: 7952667
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: May 31, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Publication number: 20110003417
    Abstract: An active matrix substrate includes base substrate, gate lines, data lines, thin-film transistors and pixel electrodes. The gate lines are formed on the base substrate. The data lines are formed over the gate lines. Each of the data lines crosses all of the gate lines with an insulating film interposed therebetween. The thin-film transistors are formed over the base substrate. Each of the thin-film transistors is associated with one of the gate lines and operates responsive to a signal on the associated gate line. Each of the pixel electrodes is associated with one of the data lines and one of the thin-film transistors and is electrically connectable to the associated data line by way of the associated thin-film transistor. Each of the pixel electrodes and the associated thin-film transistor are connected together by way of a conductive member.
    Type: Application
    Filed: August 31, 2010
    Publication date: January 6, 2011
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Okada, Yuichi Saito, Shinya Yamakawa, Atsushi Ban, Masaya Okamoto, Hiroyuki Ohgami
  • Publication number: 20100283950
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Application
    Filed: July 15, 2010
    Publication date: November 11, 2010
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yøzo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Patent number: 7829391
    Abstract: An active matrix substrate includes base substrate, gate lines, data lines, thin-film transistors and pixel electrodes. The gate lines are formed on the base substrate. The data lines are formed over the gate lines. Each of the data lines crosses all of the gate lines with an insulating film interposed therebetween. The thin-film transistors are formed over the base substrate. Each of the thin-film transistors is associated with one of the gate lines and operates responsive to a signal on the associated gate line. Each of the pixel electrodes is associated with one of the data lines and one of the thin-film transistors and is electrically connectable to the associated data line by way of the associated thin-film transistor. Each of the pixel electrodes and the associated thin-film transistor are connected together by way of a conductive member.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: November 9, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Okada, Yuichi Saito, Shinya Yamakawa, Atsushi Ban, Masaya Okamoto, Hiroyuki Ohgami
  • Publication number: 20100224759
    Abstract: Disclosed herein is a solid-state imaging device including, active elements configured to handle the charge captured in a photoreceiving region, an element isolation region configured to isolate regions of the active element, a first impurity region configured to surround the element isolation region, and a second impurity region including an impurity region lower in impurity concentration than the first impurity region, the second impurity region being provided between the first impurity region and active elements.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 9, 2010
    Applicant: SONY CORPORATION
    Inventors: Akiko Honjo, Shinya Yamakawa
  • Publication number: 20100167443
    Abstract: An active matrix substrate includes base substrate, gate lines, data lines, thin-film transistors and pixel electrodes. The gate lines are formed on the base substrate. The data lines are formed over the gate lines. Each of the data lines crosses all of the gate lines with an insulating film interposed therebetween. The thin-film transistors are formed over the base substrate. Each of the thin-film transistors is associated with one of the gate lines and operates responsive to a signal on the associated gate line. Each of the pixel electrodes is associated with one of the data lines and one of the thin-film transistors and is electrically connectable to the associated data line by way of the associated thin-film transistor. Each of the pixel electrodes and the associated thin-film transistor are connected together by way of a conductive member.
    Type: Application
    Filed: February 11, 2010
    Publication date: July 1, 2010
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Okada, Yuichi Saito, Shinya Yamakawa, Atsushi Ban, Masaya Okamoto, Hiroyuki Ohgami
  • Publication number: 20100102394
    Abstract: It is to enhance a current increasing effect by increasing a stress applied on a channel of a transistor. The invention is characterized by comprising: side wall insulating films 33 and 53 formed on a semiconductor substrate 11 with trenches 39 and 59 which are formed by removing dummy gates; gate electrodes 43 and 63 formed within the trenches 39 and 59 through a gate insulating film 41; first and second stress applying films 21 and 22 respectively formed along the side wall insulating films 33 and 53 over the semiconductor substrate 11; and source/drain regions 35, 36, 55, and 56 which are formed in the semiconductor substrate 11 on the both sides of the gate electrodes 43 and 63, in that the stress applying films 21 and 22 are formed before the first trench 39 and the second trench 59 are formed.
    Type: Application
    Filed: February 27, 2008
    Publication date: April 29, 2010
    Applicant: SONY CORPORATION
    Inventors: Shinya Yamakawa, Yasushi Tateshita
  • Patent number: 7696516
    Abstract: An active matrix substrate includes base substrate, gate lines, data lines, thin-film transistors and pixel electrodes. The gate lines are formed on the base substrate. The data lines are formed over the gate lines. Each of the data lines crosses all of the gate lines with an insulating film interposed therebetween. The thin-film transistors are formed over the base substrate. Each of the thin-film transistors is associated with one of the gate lines and operates responsive to a signal on the associated gate line. Each of the pixel electrodes is associated with one of the data lines and one of the thin-film transistors and is electrically connectable to the associated data line by way of the associated thin-film transistor. Each of the pixel electrodes and the associated thin-film transistor are connected together by way of a conductive member.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: April 13, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Okada, Yuichi Saito, Shinya Yamakawa, Atsushi Ban, Masaya Okamoto, Hiroyuki Ohgami
  • Patent number: 7663717
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: February 16, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Publication number: 20090321820
    Abstract: Disclosed herein is a semiconductor device including: a gate electrode formed in a recess dug in the surface of a semiconductor substrate, with a gate insulating film interposed between the gate electrode and the semiconductor substrate; a source-drain diffusion layer formed on that surface of the semiconductor substrate which is adjacent to both sides of the gate electrode; and a stress applying layer which is formed deep from the surface of the semiconductor substrate in such a way as to cover the surface of the source-drain diffusion layer.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 31, 2009
    Applicant: Sony Corporation
    Inventor: Shinya Yamakawa
  • Patent number: 7535528
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: May 19, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Publication number: 20090065809
    Abstract: A semiconductor device is provided in which a stress can be effectively applied from a semiconductor layer having a different lattice constant from a semiconductor substrate to a channel part, whereby carrier mobility can be improved and higher functionality can be achieved. In a semiconductor device 1 including a gate electrode 7 provided on a semiconductor substrate 3 via a gate insulating film 5 and semiconductor layers (stress applying layers) 9 formed by epitaxial growth in parts formed by digging down the surface of the semiconductor substrate 3 on both sides of the gate electrode 7, the semiconductor layers 9 are a layer having a different lattice constant from the semiconductor substrate 3, and the gate insulating film 5 and the gate electrode 7 are provided in a state of filling a part formed by digging down the surface of the semiconductor substrate 3 between the semiconductor layers 9.
    Type: Application
    Filed: January 4, 2008
    Publication date: March 12, 2009
    Applicant: SONY CORPORATION
    Inventor: Shinya Yamakawa
  • Publication number: 20090026457
    Abstract: An active matrix substrate includes base substrate, gate lines, data lines, thin-film transistors and pixel electrodes. The gate lines are formed on the base substrate. The data lines are formed over the gate lines. Each of the data lines crosses all of the gate lines with an insulating film interposed therebetween. The thin-film transistors are formed over the base substrate. Each of the thin-film transistors is associated with one of the gate lines and operates responsive to a signal on the associated gate line. Each of the pixel electrodes is associated with one of the data lines and one of the thin-film transistors and is electrically connectable to the associated data line by way of the associated thin-film transistor. Each of the pixel electrodes and the associated thin-film transistor are connected together by way of a conductive member.
    Type: Application
    Filed: September 16, 2008
    Publication date: January 29, 2009
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Okada, Yuichi Saito, Shinya Yamakawa, Atsushi Ban, Masaya Okamoto, Hiroyuki Ohgami
  • Patent number: 7468768
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: December 23, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Patent number: 7459723
    Abstract: An active matrix substrate includes base substrate, gate lines, data lines, thin-film transistors and pixel electrodes. The gate lines are formed on the base substrate. The data lines are formed over the gate lines. Each of the data lines crosses all of the gate lines with an insulating film interposed therebetween. The thin-film transistors are formed over the base substrate. Each of the thin-film transistors is associated with one of the gate lines and operates responsive to a signal on the associated gate line. Each of the pixel electrodes is associated with one of the data lines and one of the thin-film transistors and is electrically connectable to the associated data line by way of the associated thin-film transistor. Each of the pixel electrodes and the associated thin-film transistor are connected together by way of a conductive member.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: December 2, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshihiro Okada, Yuichi Saito, Shinya Yamakawa, Atsushi Ban, Masaya Okamoto, Hiroyuki Ohgami
  • Publication number: 20070195237
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Application
    Filed: August 22, 2006
    Publication date: August 23, 2007
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Publication number: 20070019138
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Application
    Filed: August 22, 2006
    Publication date: January 25, 2007
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Publication number: 20070002227
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Application
    Filed: August 22, 2006
    Publication date: January 4, 2007
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban
  • Patent number: 7151581
    Abstract: A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; a first polarizer provided on a surface of the first substrate which is on the opposite side to the liquid crystal layer; a second polarizer provided on a surface of the second substrate which is on the opposite side to the liquid crystal layer; a first phase compensation element provided between the first polarizer and the liquid crystal layer; and a second phase compensation element provided between the second polarizer and the liquid crystal layer. A plurality of pixel areas are provided for display. The first substrate includes at least one transmissive electrode, and the second substrate includes a reflective electrode region and a transmissive electrode region in correspondence with each of the plurality of pixel areas.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: December 19, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masumi Kubo, Yozo Narutaki, Shogo Fujioka, Yuko Maruyama, Takayuki Shimada, Youji Yoshimura, Mikio Katayama, Yutaka Ishii, Shinya Yamakawa, Atsushi Ban