Patents by Inventor Shiro Kamohara

Shiro Kamohara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11676655
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: June 13, 2023
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shiro Kamohara, Yasushi Yamagata, Takumi Hasegawa, Nobuyuki Sugii
  • Patent number: 11665640
    Abstract: A microcomputer performs a power supply operation to a wireless communication module at a first time interval set based on a power generation amount at a lowest day power generation amount of a temperature differential power generation module. In addition, the microcomputer performs the power supply operation to a sensor at a second time interval set based on the power generation amount at the lowest day power generation amount of the temperature differential power generation module.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: May 30, 2023
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shiro Kamohara, Akira Tanabe, Kazuya Uejima, Jun Uehara, Kazuya Okuyama
  • Publication number: 20220406936
    Abstract: In a semiconductor device according to an embodiment, a thickness of a semiconductor layer of an SOI substrate on which a field effect transistor constituting an analog circuit is formed is set to 2 nm or more and 24 nm or less.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 22, 2022
    Inventors: Kazuya UEJIMA, Michio ONDA, Takashi HASE, Tatsuo NISHINO, Shiro KAMOHARA
  • Publication number: 20220301618
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 22, 2022
    Inventors: Shiro KAMOHARA, Yasushi YAMAGATA, Takumi HASEGAWA, Nobuyuki SUGII
  • Publication number: 20220264450
    Abstract: A microcomputer performs a power supply operation to a wireless communication module at a first time interval set based on a power generation amount at a lowest day power generation amount of a temperature differential power generation module. In addition, the microcomputer performs the power supply operation to a sensor at a second time interval set based on the power generation amount at the lowest day power generation amount of the temperature differential power generation module.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 18, 2022
    Inventors: Shiro KAMOHARA, Akira TANABE, Kazuya UEJIMA, Jun UEHARA, Kazuya OKUYAMA
  • Patent number: 11391389
    Abstract: The semiconductor device controls the first circuit for supplying/stopping the current supplied by a DC power supply to the latching solenoid consisting of a coil and a movable iron core and a permanent magnet, the current is measured based on the input from the current detection circuit. The semiconductor device includes a control circuit having a low power dissipation mode in which the leakage current is reduced, and a normal operation mode. The control circuit maintains the low power consumption mode when no current is flowing through the coil, when a current is flowing through the coil maintains the normal operation mode, further, the movable iron core It comprises a control circuit configured to detect the inflection point of the current detected by the current detection circuit when leaving the permanent magnet.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 19, 2022
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Shiro Kamohara, Kazuya Uejima
  • Patent number: 11373700
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 28, 2022
    Assignee: Renesas Electronics Corporation
    Inventors: Shiro Kamohara, Yasushi Yamagata, Takumi Hasegawa, Nobuyuki Sugii
  • Publication number: 20200313000
    Abstract: In a semiconductor device according to an embodiment, a thickness of a semiconductor layer of an SOI substrate on which a field effect transistor constituting an analog circuit is formed is set to 2 nm or more and 24 nm or less.
    Type: Application
    Filed: November 14, 2017
    Publication date: October 1, 2020
    Inventors: Kazuya UEJIMA, Shiro KAMOHARA, Michio ONDA, Takashi HASE, Tatsuo NISHINO
  • Publication number: 20200309282
    Abstract: The semiconductor device controls the first circuit for supplying/stopping the current supplied by a DC power supply to the latching solenoid consisting of a coil and a movable iron core and a permanent magnet, the current is measured based on the input from the current detection circuit. The semiconductor device includes a control circuit having a low power dissipation mode in which the leakage current is reduced, and a normal operation mode. The control circuit maintains the low power consumption mode when no current is flowing through the coil, when a current is flowing through the coil maintains the normal operation mode, further, the movable iron core It comprises a control circuit configured to detect the inflection point of the current detected by the current detection circuit when leaving the permanent magnet.
    Type: Application
    Filed: March 16, 2020
    Publication date: October 1, 2020
    Inventors: Shiro KAMOHARA, Kazuya UEJIMA
  • Publication number: 20190244659
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Shiro KAMOHARA, Yasushi YAMAGATA, Takumi HASEGAWA, Nobuyuki SUGII
  • Patent number: 10311943
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: June 4, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Shiro Kamohara, Yasushi Yamagata, Takumi Hasegawa, Nobuyuki Sugii
  • Patent number: 10014067
    Abstract: To provide a semiconductor device equipped with anti-fuse memory cells, which is capable of improving read-out accuracy of information. There is provided a semiconductor device in which an N channel type memory transistor, a selection core transistor, and a selection bulk transistor are respectively electrically coupled in series. The memory transistor and the selection core transistor are formed in a silicon layer of an SOI substrate, and the selection bulk transistor is formed in a semiconductor substrate. A word line is coupled to a memory gate electrode of the memory transistor, and a bit line is coupled to the selection bulk transistor. A write-in operation is performed while applying a counter voltage opposite in polarity to a voltage applied from the word line to the memory gate electrode to the bit line.
    Type: Grant
    Filed: December 17, 2016
    Date of Patent: July 3, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Keiichi Maekawa, Shiro Kamohara, Yasushi Yamagata, Yoshiki Yamamoto
  • Publication number: 20180158512
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Application
    Filed: February 5, 2018
    Publication date: June 7, 2018
    Inventors: Shiro KAMOHARA, Yasushi YAMAGATA, Takumi HASEGAWA, Nobuyuki SUGII
  • Patent number: 9959924
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: May 1, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Shiro Kamohara, Yasushi Yamagata, Takumi Hasegawa, Nobuyuki Sugii
  • Publication number: 20170263328
    Abstract: To provide a semiconductor device equipped with anti-fuse memory cells, which is capable of improving read-out accuracy of information. There is provided a semiconductor device in which an N channel type memory transistor, a selection core transistor, and a selection bulk transistor are respectively electrically coupled in series. The memory transistor and the selection core transistor are formed in a silicon layer of an SOI substrate, and the selection bulk transistor is formed in a semiconductor substrate. A word line is coupled to a memory gate electrode of the memory transistor, and a bit line is coupled to the selection bulk transistor. A write-in operation is performed while applying a counter voltage opposite in polarity to a voltage applied from the word line to the memory gate electrode to the bit line.
    Type: Application
    Filed: December 17, 2016
    Publication date: September 14, 2017
    Inventors: Keiichi MAEKAWA, Shiro KAMOHARA, Yasushi YAMAGATA, Yoshiki YAMAMOTO
  • Publication number: 20170178717
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: Shiro KAMOHARA, Yasushi YAMAGATA, Takumi HASEGAWA, Nobuyuki SUGII
  • Patent number: 9646679
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: May 9, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Shiro Kamohara, Yasushi Yamagata, Takumi Hasegawa, Nobuyuki Sugii
  • Publication number: 20160180923
    Abstract: To provide a semiconductor device which can be stably operated while achieving a reduction of the power consumption. A semiconductor device includes a CPU, a system controller which designates an operation speed of the CPU, P-type SOTB transistors, and N-type SOTB transistors. The semiconductor device is provided with an SRAM which is connected to the CPU, and a substrate bias circuit which is connected to the system controller and is capable of supplying substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors. Here, when the system controller designates a low speed mode to operate the CPU at a low speed, the substrate bias circuit supplies the substrate bias voltages to the P-type SOTB transistors and the N-type SOTB transistors.
    Type: Application
    Filed: November 25, 2015
    Publication date: June 23, 2016
    Inventors: Shiro KAMOHARA, Yasushi YAMAGATA, Takumi HASEGAWA, Nobuyuki SUGII
  • Patent number: 8482058
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: July 9, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Publication number: 20120235250
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa