Patents by Inventor Shiro Kamohara

Shiro Kamohara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8232595
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: July 31, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Publication number: 20110220999
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: May 19, 2011
    Publication date: September 15, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 7982263
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: July 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Publication number: 20100044793
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d(M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: October 30, 2009
    Publication date: February 25, 2010
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Publication number: 20070114606
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: January 4, 2007
    Publication date: May 24, 2007
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 7180768
    Abstract: Disclosed is a method of improving stability of a memory cell in read mode in an SRAM including a memory cell comprising two access MOS transistors and two drive MOS transistors. The magnitude of voltage between gate and source of an access transistor of a memory cell connected to a selected word line is controlled to be smaller than a power-supply voltage by controlling the voltage of selected word line WL in read mode.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: February 20, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Akira Kotabe, Kenichi Osada, Masahiro Moniwa, Shiro Kamohara
  • Patent number: 7176523
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: February 13, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 7067889
    Abstract: A two-type gate process is suitable for forming a gate insulation film partially formed of a high dielectric film, for example, a titanium oxide film (gate insulation film of the internal circuit) having a relative dielectric constant larger than that of silicon nitride on a substrate, and a silicon nitride film is deposited on the titanium oxide film. The silicon nitride film will prevent oxidation of the titanium oxide film when the surface of the substrate is subjected to thermal oxidation in the next process step. Next, the silicon nitride film and the titanium oxide film on the I/O circuit region are removed, while the silicon nitride film and the titanium oxide film on the internal circuit region remain, and the substrate is subjected to thermal oxidation to form a silicon oxide film as a gate insulation film on the surface of the I/O circuit region.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: June 27, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Tatsuya Hinoue, Fumitoshi Ito, Shiro Kamohara
  • Publication number: 20060133146
    Abstract: A semiconductor device having a well region of a first conduction type formed in a main surface of a semiconductor substrate, and a nonvolatile memory element formed at the well region is provided. The nonvolatile memory element comprises a gate electrode formed over the well region through an insulating film for charge storage, and a source region and drain region of a second conduction type which are separated from each other and are disposed in the well region. The well region includes a third semiconductor region, a second semiconductor region which is arranged at a position deeper than the third semiconductor region, and a first semiconductor region that is arranged at a position deeper than the second semiconductor region. The first and third semiconductor regions, respectively, have an impurity concentration higher than the second semiconductor region.
    Type: Application
    Filed: December 9, 2005
    Publication date: June 22, 2006
    Inventors: Keiichi Maekawa, Shinichi Minami, Kozo Watanabe, Shiro Kamohara, Shoji Yoshida
  • Patent number: 6881597
    Abstract: Disclosed is a technique capable of improving a yield of a semiconductor device by measuring a plurality of TEGs arranged in a scribe region. A first electrode pad connected to each terminal of a TEG is formed as a rectangular, minute, isolated pattern having a side length of about 0.5 ?m or shorter and constituted of an uppermost layer wiring on a semiconductor substrate, and therefore, a great number of TEGs can be laid in a first scribe region. The characteristic evaluation or the failure analysis is performed by contacting a nanoprobe having a tip radius of curvature of 0.05 ?m to 0.8 ?m to the first electrode pad.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: April 19, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Kyoichiro Asayama, Yasuhiro Mitsui, Fumiko Arakawa, Shiro Kamohara, Yuzuru Ohji
  • Publication number: 20050047197
    Abstract: Disclosed is a method of improving stability of a memory cell in read mode in an SRAM including a memory cell comprising two access MOS transistors and two drive MOS transistors. The magnitude of voltage between gate and source of an access transistor of a memory cell connected to a selected word line is controlled to be smaller than a power-supply voltage by controlling the voltage of selected word line WL in read mode.
    Type: Application
    Filed: June 29, 2004
    Publication date: March 3, 2005
    Inventors: Akira Kotabe, Kenichi Osada, Masahiro Moniwa, Shiro Kamohara
  • Publication number: 20050017296
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: August 19, 2004
    Publication date: January 27, 2005
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 6797594
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: September 28, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 6734114
    Abstract: A two-type gate process is suitable for forming a gate insulation film partially formed of a high dielectric film, for example, a titanium oxide film (gate insulation film of the internal circuit) having a relative dielectric constant larger than that of silicon nitride on a substrate, and a silicon nitride film is deposited on the titanium oxide film. The silicon nitride film will prevent oxidation of the titanium oxide film when the surface of the substrate is subjected to thermal oxidation in the next process step. Next, the silicon nitride film and the titanium oxide film on the I/0 circuit region are removed, while the silicon nitride film and the titanium oxide film on the internal circuit region remain, and the substrate is subjected to thermal oxidation to form a silicon oxide film as a gate insulation film on the surface of the I/O circuit region.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: May 11, 2004
    Assignee: Renesas Technology, Corp.
    Inventors: Tatsuya Hinoue, Fumitoshi Ito, Shiro Kamohara
  • Patent number: 6677194
    Abstract: A low threshold voltage NMIS area and a high threshold voltage PMIS area are set by a photoresist mask also used for well formation. Using a photoresist mask with openings for the NMIS and PMIS, the NMIS and PMIS areas are set by one ion implantation step. After gate oxidation, ion implantation is conducted through an amorphous silicon film onto wells, channels, and gate electrodes. A plurality of CMIS threshold voltages can be set and the gate electrodes of both polarities can be formed in a reduced number of steps using photoresist. This solves the problem in which photomasks are required as many as there are ion implantation types for wells, channel stoppers, gate electrodes, and threshold voltage control and hence the number of manufacturing steps and the production cost are increased.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Toshiaki Yamanaka, Akio Nishida, Yasuko Yoshida, Shuji Ikeda, Kenichi Kuroda, Shiro Kamohara, Shinichiro Kimura, Eiichi Murakami, Hideyuki Matsuoka, Masataka Minami
  • Patent number: 6605842
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: August 12, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Publication number: 20030141557
    Abstract: A two-type gate process is suitable for forming a gate insulation film partially formed of a high dielectric film, for example, a titanium oxide film (gate insulation film of the internal circuit) having a relative dielectric constant larger than that of silicon nitride on a substrate, and a silicon nitride film is deposited on the titanium oxide film. The silicon nitride film will prevent oxidation of the titanium oxide film when the surface of the substrate is subjected to thermal oxidation in the next process step. Next, the silicon nitride film and the titanium oxide film on the I/O circuit region are removed, while the silicon nitride film and the titanium oxide film on the internal circuit region remain, and the substrate is subjected to thermal oxidation to form a silicon oxide film as a gate insulation film on the surface of the I/O circuit region.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 31, 2003
    Inventors: Tatsuya Hinoue, Fumitoshi Ito, Shiro Kamohara
  • Patent number: 6600181
    Abstract: A semiconductor integrated circuit has a semiconductor internal circuit having a first power supply line and a second power supply line, wiring layers connected to a plurality of terminals of a first power supply and each having a predetermined inductance, and wiring layers connected to a plurality of terminals of a second power supply and each having a smaller inductance. Each of the former wiring layers has an inductor making a loop around the internal circuit.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 29, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Shigenori Otake, Goichi Yokomizo, Shiro Kamohara
  • Publication number: 20030092285
    Abstract: The invention provides a two-type gate process that is suitable for forming a gate insulation film partially formed of high dielectric film. A high dielectric film, for example, a titanium oxide film (gate insulation film of the internal circuit) having a relative dielectric constant larger than that of silicon nitride film is deposited on a substrate, and a silicon nitride film is deposed on the titanium oxide film. The silicon nitride film will function as an oxidation prevention film for preventing oxidation of the titanium oxide film when the surface of the substrate is subjected to thermal oxidation in the next step.
    Type: Application
    Filed: October 25, 2002
    Publication date: May 15, 2003
    Inventors: Tatsuya Hinoue, Fumitoshi Ito, Shiro Kamohara
  • Patent number: 6528848
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: March 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa