Patents by Inventor Shiyun Lin
Shiyun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20170104307Abstract: An integrated circuit includes an optical reflector with one or two bus optical waveguides and a one-dimensional, photonic crystal nanobeam cavity to provide single-mode reflection with a narrow bandwidth. In particular, the nanobeam cavity may be implemented on a nanobeam-cavity optical waveguide (such as a channel or ridge optical waveguide), which is optically coupled to the one or two bus optical waveguides. The nanobeam-cavity optical waveguide may include notches along a symmetry axis of the nanobeam-cavity optical waveguide that are partially etched from edges of the nanobeam-cavity optical waveguide toward a center of the nanobeam-cavity optical waveguide. Furthermore, a fill factor of the notches may vary as a function of location along the symmetry axis, while a pitch of the notches is unchanged, to define the nanobeam cavity.Type: ApplicationFiled: October 13, 2015Publication date: April 13, 2017Applicant: ORACLE INTERNATIONAL CORPORATIONInventors: Shiyun Lin, Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy
-
Publication number: 20170038609Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.Type: ApplicationFiled: July 8, 2015Publication date: February 9, 2017Applicant: ORACLE INTERNATIONAL CORPORATIONInventors: Ying L. Luo, Shiyun Lin, Xuezhe Zheng, Ashok V. Krishnamoorthy
-
Patent number: 9465169Abstract: An optical device is described. This optical device includes optical components having resonance wavelengths that match target values with a predefined accuracy (such as 0.1 nm) and with a predefined time stability (such as permanent or an infinite time stability) without thermal tuning and/or electronic tuning. The stable, accurate resonance wavelengths may be achieved using a wafer-scale, single (sub-second) shot trimming technique that permanently corrects the phase errors induced by material variations and fabrication inaccuracies in the optical components (and, more generally, resonant silicon-photonic optical components). In particular, the trimming technique may use photolithographic exposure of the optical components on the wafer in parallel, with time-modulation for each individual optical component based on active-element control.Type: GrantFiled: February 18, 2015Date of Patent: October 11, 2016Assignee: ORACLE INTERNATIONAL CORPORATIONInventors: Stevan S. Djordjevic, Shiyun Lin, Ivan Shubin, Xuezhe Zheng, John E. Cunningham, Ashok V. Krishnamoorthy
-
Publication number: 20160238791Abstract: An optical device is described. This optical device includes optical components having resonance wavelengths that match target values with a predefined accuracy (such as 0.1 nm) and with a predefined time stability (such as permanent or an infinite time stability) without thermal tuning and/or electronic tuning. The stable, accurate resonance wavelengths may be achieved using a wafer-scale, single (sub-second) shot trimming technique that permanently corrects the phase errors induced by material variations and fabrication inaccuracies in the optical components (and, more generally, resonant silicon-photonic optical components). In particular, the trimming technique may use photolithographic exposure of the optical components on the wafer in parallel, with time-modulation for each individual optical component based on active-element control.Type: ApplicationFiled: February 18, 2015Publication date: August 18, 2016Applicant: Oracle International CorporationInventors: Stevan S. Djordjevic, Shiyun Lin, Ivan Shubin, Xuezhe Zheng, John E. Cunningham, Ashok V. Krishnamoorthy
-
Patent number: 9411177Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.Type: GrantFiled: June 17, 2015Date of Patent: August 9, 2016Assignee: ORACLE INTERNATIONAL CORPORATIONInventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
-
Patent number: 9373934Abstract: A hybrid optical source includes a substrate with an optical amplifier (such as a III-V semiconductor optical amplifier). The substrate is coupled at an angle (such as an angle between 0 and 90°) to a silicon-on-insulator chip. In particular, the substrate may be optically coupled to the silicon-on-insulator chip by an optical coupler (such as a diffraction grating or a mirror) that efficiently couples (i.e., with low optical loss) an optical signal into a sub-micron silicon-on-insulator optical waveguide. Moreover, the silicon-on-insulator optical waveguide optically couples the light to a reflector to complete the hybrid optical source.Type: GrantFiled: January 27, 2014Date of Patent: June 21, 2016Assignee: ORACLE INTERNATIONAL CORPORATIONInventors: Shiyun Lin, Stevan S. Djordjevic, John E. Cunningham, Xuezhe Zheng, Ashok V. Krishnamoorthy
-
Publication number: 20150362764Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.Type: ApplicationFiled: June 17, 2015Publication date: December 17, 2015Inventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
-
Publication number: 20150293383Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.Type: ApplicationFiled: April 14, 2014Publication date: October 15, 2015Applicant: Oracle International CorporationInventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
-
Publication number: 20150280403Abstract: A hybrid optical source includes a substrate with an optical amplifier (such as a III-V semiconductor optical amplifier). The substrate is coupled at an angle (such as an angle between 0 and 90°) to a silicon-on-insulator chip. In particular, the substrate may be optically coupled to the silicon-on-insulator chip by an optical coupler (such as a diffraction grating or a mirror) that efficiently couples (i.e., with low optical loss) an optical signal into a sub-micron silicon-on-insulator optical waveguide. Moreover, the silicon-on-insulator optical waveguide optically couples the light to a reflector to complete the hybrid optical source.Type: ApplicationFiled: January 27, 2014Publication date: October 1, 2015Applicant: Oracle International CorporationInventors: Shiyun Lin, Stevan S. Djordjevic, John E. Cunningham, Xuezhe Zheng, Ashok V. Krishnamoorthy
-
Patent number: 9142698Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.Type: GrantFiled: April 14, 2014Date of Patent: September 22, 2015Assignee: ORACLE INTERNATIONAL CORPORATIONInventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
-
Patent number: 8472489Abstract: A light-emitting device having a ring optical resonator and capable of laser oscillation by a novel structure realized by working out the mechanism of light emission. The light-emitting device having a ring optical resonator fabricated on a base is characterized in that the optical resonator has a core made of a semiconductor and serving to propagate light and a clad formed on at least the base side of the core in the stack direction out of the base side and the opposite side of the core, at least the ring inner and outer peripheral surfaces of the core are covered with a transparent body having an index of refraction lower than that of the space or the clad, and a part of the ring inner and outer peripheral surfaces of the clad are covered with a transparent body having an index of refraction lower than that of the space or the clad.Type: GrantFiled: September 18, 2008Date of Patent: June 25, 2013Assignee: The University of TokyoInventors: Kazumi Wada, Shiyun Lin, Yosuke Kobayashi, Peng Huei Lim
-
Publication number: 20110044362Abstract: A light-emitting device having a ring optical resonator and capable of laser oscillation by a novel structure realized by working out the mechanism of light emission. The light-emitting device having a ring optical resonator fabricated on a base is characterized in that the optical resonator has a core made of a semiconductor and serving to propagate light and a clad formed on at least the base side of the core in the stack direction out of the base side and the opposite side of the core, at least the ring inner and outer peripheral surfaces of the core are covered with a transparent body having an index of refraction lower than that of the space or the clad, and a part of the ring inner and outer peripheral surfaces of the clad are covered with a transparent body having an index of refraction lower than that of the space or the clad.Type: ApplicationFiled: September 18, 2008Publication date: February 24, 2011Applicant: THE UNIVERSITY OF TOKYOInventors: Kazumi Wada, Shiyun Lin, Yosuke Kobayashi, Peng Huei Lim