Patents by Inventor Shiyun Lin

Shiyun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170104307
    Abstract: An integrated circuit includes an optical reflector with one or two bus optical waveguides and a one-dimensional, photonic crystal nanobeam cavity to provide single-mode reflection with a narrow bandwidth. In particular, the nanobeam cavity may be implemented on a nanobeam-cavity optical waveguide (such as a channel or ridge optical waveguide), which is optically coupled to the one or two bus optical waveguides. The nanobeam-cavity optical waveguide may include notches along a symmetry axis of the nanobeam-cavity optical waveguide that are partially etched from edges of the nanobeam-cavity optical waveguide toward a center of the nanobeam-cavity optical waveguide. Furthermore, a fill factor of the notches may vary as a function of location along the symmetry axis, while a pitch of the notches is unchanged, to define the nanobeam cavity.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 13, 2017
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Shiyun Lin, Xuezhe Zheng, Ying Luo, Ashok V. Krishnamoorthy
  • Publication number: 20170038609
    Abstract: An optical modulator is described. This optical modulator may be implemented using silicon-on-insulator (SOI) technology. In particular, a semiconductor layer in an SOI platform may include a photonic crystal having a group velocity of light that is less than that of the semiconductor layer. Moreover, an optical modulator (such as a Mach-Zehnder interferometer) may be implemented in the photonic crystal with a vertical junction in the semiconductor layer. During operation of the optical modulator, an input optical signal may be split into two different optical signals that feed two optical waveguides, and then subsequently combined into an output optical signal. Furthermore, during operation, time-varying bias voltages may be applied across the vertical junction in the optical modulator using contacts defined along a lateral direction of the optical modulator.
    Type: Application
    Filed: July 8, 2015
    Publication date: February 9, 2017
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ying L. Luo, Shiyun Lin, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9465169
    Abstract: An optical device is described. This optical device includes optical components having resonance wavelengths that match target values with a predefined accuracy (such as 0.1 nm) and with a predefined time stability (such as permanent or an infinite time stability) without thermal tuning and/or electronic tuning. The stable, accurate resonance wavelengths may be achieved using a wafer-scale, single (sub-second) shot trimming technique that permanently corrects the phase errors induced by material variations and fabrication inaccuracies in the optical components (and, more generally, resonant silicon-photonic optical components). In particular, the trimming technique may use photolithographic exposure of the optical components on the wafer in parallel, with time-modulation for each individual optical component based on active-element control.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: October 11, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Stevan S. Djordjevic, Shiyun Lin, Ivan Shubin, Xuezhe Zheng, John E. Cunningham, Ashok V. Krishnamoorthy
  • Publication number: 20160238791
    Abstract: An optical device is described. This optical device includes optical components having resonance wavelengths that match target values with a predefined accuracy (such as 0.1 nm) and with a predefined time stability (such as permanent or an infinite time stability) without thermal tuning and/or electronic tuning. The stable, accurate resonance wavelengths may be achieved using a wafer-scale, single (sub-second) shot trimming technique that permanently corrects the phase errors induced by material variations and fabrication inaccuracies in the optical components (and, more generally, resonant silicon-photonic optical components). In particular, the trimming technique may use photolithographic exposure of the optical components on the wafer in parallel, with time-modulation for each individual optical component based on active-element control.
    Type: Application
    Filed: February 18, 2015
    Publication date: August 18, 2016
    Applicant: Oracle International Corporation
    Inventors: Stevan S. Djordjevic, Shiyun Lin, Ivan Shubin, Xuezhe Zheng, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 9411177
    Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: August 9, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
  • Patent number: 9373934
    Abstract: A hybrid optical source includes a substrate with an optical amplifier (such as a III-V semiconductor optical amplifier). The substrate is coupled at an angle (such as an angle between 0 and 90°) to a silicon-on-insulator chip. In particular, the substrate may be optically coupled to the silicon-on-insulator chip by an optical coupler (such as a diffraction grating or a mirror) that efficiently couples (i.e., with low optical loss) an optical signal into a sub-micron silicon-on-insulator optical waveguide. Moreover, the silicon-on-insulator optical waveguide optically couples the light to a reflector to complete the hybrid optical source.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: June 21, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Shiyun Lin, Stevan S. Djordjevic, John E. Cunningham, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Publication number: 20150362764
    Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 17, 2015
    Inventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
  • Publication number: 20150293383
    Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 15, 2015
    Applicant: Oracle International Corporation
    Inventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
  • Publication number: 20150280403
    Abstract: A hybrid optical source includes a substrate with an optical amplifier (such as a III-V semiconductor optical amplifier). The substrate is coupled at an angle (such as an angle between 0 and 90°) to a silicon-on-insulator chip. In particular, the substrate may be optically coupled to the silicon-on-insulator chip by an optical coupler (such as a diffraction grating or a mirror) that efficiently couples (i.e., with low optical loss) an optical signal into a sub-micron silicon-on-insulator optical waveguide. Moreover, the silicon-on-insulator optical waveguide optically couples the light to a reflector to complete the hybrid optical source.
    Type: Application
    Filed: January 27, 2014
    Publication date: October 1, 2015
    Applicant: Oracle International Corporation
    Inventors: Shiyun Lin, Stevan S. Djordjevic, John E. Cunningham, Xuezhe Zheng, Ashok V. Krishnamoorthy
  • Patent number: 9142698
    Abstract: An integrated optical device includes an electro-absorption modulator disposed on a top surface of an optical waveguide. The electro-absorption modulator includes germanium disposed in a cavity between an n-type doped silicon sidewall and a p-type doped silicon sidewall. By applying a voltage between the n-type doped silicon sidewall and the p-type doped silicon sidewall, an electric field can be generated in a plane of the optical waveguide, but perpendicular to a propagation direction of the optical signal. This electric field shifts a band gap of the germanium, thereby modulating the optical signal.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: September 22, 2015
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: John E. Cunningham, Jin Yao, Ivan Shubin, Guoliang Li, Xuezhe Zheng, Shiyun Lin, Hiren D. Thacker, Stevan S. Djordjevic, Ashok V. Krishnamoorthy
  • Patent number: 8472489
    Abstract: A light-emitting device having a ring optical resonator and capable of laser oscillation by a novel structure realized by working out the mechanism of light emission. The light-emitting device having a ring optical resonator fabricated on a base is characterized in that the optical resonator has a core made of a semiconductor and serving to propagate light and a clad formed on at least the base side of the core in the stack direction out of the base side and the opposite side of the core, at least the ring inner and outer peripheral surfaces of the core are covered with a transparent body having an index of refraction lower than that of the space or the clad, and a part of the ring inner and outer peripheral surfaces of the clad are covered with a transparent body having an index of refraction lower than that of the space or the clad.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: June 25, 2013
    Assignee: The University of Tokyo
    Inventors: Kazumi Wada, Shiyun Lin, Yosuke Kobayashi, Peng Huei Lim
  • Publication number: 20110044362
    Abstract: A light-emitting device having a ring optical resonator and capable of laser oscillation by a novel structure realized by working out the mechanism of light emission. The light-emitting device having a ring optical resonator fabricated on a base is characterized in that the optical resonator has a core made of a semiconductor and serving to propagate light and a clad formed on at least the base side of the core in the stack direction out of the base side and the opposite side of the core, at least the ring inner and outer peripheral surfaces of the core are covered with a transparent body having an index of refraction lower than that of the space or the clad, and a part of the ring inner and outer peripheral surfaces of the clad are covered with a transparent body having an index of refraction lower than that of the space or the clad.
    Type: Application
    Filed: September 18, 2008
    Publication date: February 24, 2011
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Kazumi Wada, Shiyun Lin, Yosuke Kobayashi, Peng Huei Lim