Patents by Inventor Shoji Ikeda

Shoji Ikeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963458
    Abstract: Provided are a magnetic tunnel junction dement suppressing diffusion and penetration of constituent elements between a hard mask film, and a magnetic tunnel junction film and a protection layer, and a method for manufacturing the magnetic tunnel junction element. The magnetic tunnel junction element has a configuration in which a non-magnetic insertion layer (7) including Ta or the like is inserted beneath a hard mask layer (8).
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: April 16, 2024
    Assignee: TOHOKU UNIVERSITY
    Inventors: Koichi Nishioka, Tetsuo Endoh, Shoji Ikeda, Hiroaki Honjo, Hideo Sato, Sadahiko Miura
  • Publication number: 20230407459
    Abstract: The present invention relates to a platinum-based sputtering target containing platinum or a platinum alloy. The platinum-based sputtering target of the present invention is characterized by a material structure in a thickness-direction cross section thereof. Specifically, when a thickness-direction cross section is equally divided into n sections (n=5 to 20) along a thickness direction, a region including (n?2) sections excluding both end sections is set as a determination region, and when an average grain size in each of the sections is measured in the determination region, as well as an average grain size in the entire determination region is measured, the average grain size in the entire determination region is 150 ?m or less, and a coefficient of variation calculated based on the average grain size in each of the sections of the determination region is 15% or less.
    Type: Application
    Filed: November 15, 2021
    Publication date: December 21, 2023
    Applicants: TOHOKU UNIVERSITY, TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Akihito FUJINO, Kunihiro TANAKA, Shuichi KUBOTA, Takao ASADA, Tetsuo ENDOH, Shoji IKEDA
  • Patent number: 11770981
    Abstract: Provided are a magnetoresistance effect element and a magnetic memory having a shape magnetic anisotropy and using a recording layer having an anti-parallel coupling. A first magnetic layer (3) and a second magnetic layer (5) of the magnetoresistance effect element include a ferromagnetic substance, have a magnetization direction variable to the direction perpendicular to a film surface and are magnetically coupled in an anti-parallel direction, and a junction size D (nm), which is a length of the longest straight line on an end face perpendicular to the thickness direction of the first magnetic layer (3) and the second magnetic layer (5), a film thickness t1 (nm) of the first magnetic layer (3), and a film thickness t2 (nm) of the second magnetic layer (5) satisfy relationships D<t1 and D?t1 or D?t1 and D<t2.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: September 26, 2023
    Assignee: TOHOKU UNIVERSITY
    Inventors: Hiroaki Honjo, Tetsuo Endoh, Shoji Ikeda, Hideo Sato, Koichi Nishioka
  • Patent number: 11765981
    Abstract: A magnetoresistance effect element with a small element size can be provided which achieves both an increase in a thermal stability factor ? and a reduction in a writing current IC0 and which improves a performance index ?/IC0(?A?1) obtained by dividing the thermal stability factor ? by the writing current IC0. The magnetoresistance effect element includes a first reference layer (B1), a first junction layer (11), a first magnetic layer (21), a first non-magnetic coupling layer (31), a second magnetic layer (22), and a second junction layer (12), and a film thickness of the first non-magnetic coupling layer (31) is 0.1 nm or more and 0.3 nm or less.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: September 19, 2023
    Assignee: TOHOKU UNIVERSITY
    Inventors: Sadahiko Miura, Hiroaki Honjo, Hideo Sato, Shoji Ikeda, Tetsuo Endoh
  • Publication number: 20230292623
    Abstract: A magnetoresistance effect element with a small element size can be provided which achieves both an increase in a thermal stability factor ? and a reduction in a writing current IC0 and which improves a performance index ?/IC0(?A?1) obtained by dividing the thermal stability factor ? by the writing current IC0. The magnetoresistance effect element includes a first reference layer (B1), a first junction layer (11), a first magnetic layer (21), a first non-magnetic coupling layer (31), a second magnetic layer (22), and a second junction layer (12), and a film thickness of the first non-magnetic coupling layer (31) is 0.1 nm or more and 0.3 nm or less.
    Type: Application
    Filed: June 21, 2019
    Publication date: September 14, 2023
    Inventors: Sadahiko MIURA, Hiroaki HONJO, Hideo SATO, Shoji IKEDA, Tetsuo ENDOH
  • Publication number: 20230243062
    Abstract: A silicon wafer is provided which is a Czochralski wafer formed of silicon, and a method for producing the silicon wafer are provided. The wafer includes a bulk layer having an oxygen concentration of 0.5×1018/cm3 or more; and a surface layer extending from the surface of the wafer to 300 nm in depth, and having an oxygen concentration of 2×1018/cm3 or more.
    Type: Application
    Filed: June 14, 2021
    Publication date: August 3, 2023
    Inventors: Haruo SUDO, Takashi ISHIKAWA, Koji IZUNOME, Hisashi MATSUMURA, Tatsuhiko AOKI, Shoji IKEDA, Tetsuo ENDOH, Etsuo FUKUDA
  • Patent number: 11631804
    Abstract: A perpendicular magnetization type three-terminal SOT-MRAM that does not need an external magnetic field is provided. A magnetoresistance effect element where a first magnetic layer/nonmagnetic spacer layer/recording layer are disposed in order, and the first magnetic layer and the nonmagnetic spacer layer are provided to a channel layer.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: April 18, 2023
    Assignee: TOHOKU UNIVERSITY
    Inventors: Yoshiaki Saito, Shoji Ikeda, Hideo Sato, Tetsuo Endoh
  • Patent number: 11610614
    Abstract: Provided are a magnetoresistive element, a magnetic memory device, and a writing and reading method for a magnetic memory device, in which an aspect ratio of a junction portion can be decreased. A magnetoresistive element 1 of the invention, includes: a heavy metal layer 2 that is an epitaxial layer; and a junction portion 3 including a recording layer 31 that is provided on the heavy metal layer 2 and includes a ferromagnetic layer of an epitaxial layer magnetized in an in-plane direction, which is an epitaxial layer, a barrier layer 32 that is provided on the recording layer 31 and includes an insulating body, and a reference layer 33 that is provided on the barrier layer 32 and has magnetization fixed in the in-plane direction, in which the recording layer 31 is subjected to magnetization reversal by applying a write current to the heavy metal layer 2.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 21, 2023
    Assignee: TOHOKU UNIVERSITY
    Inventors: Yoshiaki Saito, Shoji Ikeda, Hideo Sato, Tetsuo Endoh
  • Publication number: 20230028652
    Abstract: A magnetic multilayer film for a magnetic memory element includes an amorphous heavy metal layer having a multilayer structure in which a plurality of first layers containing Hf alternate repeatedly with a plurality of second layers containing a heavy metal excluding Hf; and a recording layer that includes a ferromagnetic layer and that is adjacent to the heavy metal layer, the ferromagnetic layer having a variable magnetization direction.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 26, 2023
    Applicant: TOHOKU UNIVERSITY
    Inventors: Yoshiaki SAITO, Tetsuo ENDOH, Shoji IKEDA
  • Patent number: 11563169
    Abstract: A magnetic tunnel junction element (10) includes a configuration in which a reference layer (14) that includes a ferromagnetic material, a barrier layer (15) that includes O, a recording layer (16) that includes a ferromagnetic material including Co or Fe, a first protective layer (17) that includes O, and a second protective layer (18) that includes at least one of Pt, Ru, Co, Fe, CoB, FeB, or CoFeB are layered.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: January 24, 2023
    Assignee: TOHOKU UNIVERSITY
    Inventors: Hideo Sato, Yoshihisa Horikawa, Shunsuke Fukami, Shoji Ikeda, Fumihiro Matsukura, Hideo Ohno, Tetsuo Endoh, Hiroaki Honjo
  • Patent number: 11532667
    Abstract: Provided are a magnetic stacked film that is capable of improving a write efficiency, and a magnetic memory element and a magnetic memory using the magnetic stacked film. A magnetic stacked film 1 is a stacked film for a magnetic memory element 100, and includes: a heavy metal layer 2 that contains ? phase W1-xTax (0.00<x?0.30); and a recording layer 10 that includes a ferromagnetic layer 18 having a reversible magnetization direction and is adjacent to the heavy metal layer 2, in which a thickness of the heavy metal layer 2 is 2 nm or more and 8 nm or less.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 20, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Yoshiaki Saito, Shoji Ikeda, Hideo Sato, Tetsuo Endoh
  • Patent number: 11468932
    Abstract: A magnetic memory device includes: a memory cell array including a plurality of lines arranged parallel to one another at predetermined intervals and extending in one direction, and a plurality of memory cells connected to the plurality of lines and arranged in a matrix along an extending direction of the plurality of lines and along an arrangement direction of the plurality of lines, each of the plurality of memory cells including a magnetoresistance effect element; a selection circuit connected to the plurality of lines and configured to select non-adjacent lines that are not adjacent to one another, from the plurality of lines; and a controller connected to the selection circuit and configured to cause the selection circuit to select the non-adjacent lines and allow a write current to flow through the non-adjacent lines simultaneously in writing data on the memory cell array.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: October 11, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Tetsuo Endoh, Yoshiaki Saito, Shoji Ikeda
  • Patent number: 11462253
    Abstract: Provided is a magnetoresistance effect element in which the magnetization direction of the recording layer is perpendicular to the film surface and which has a high thermal stability factor ?, and a magnetic memory. A recording layer having a configuration of first magnetic layer/first non-magnetic coupling layer/first magnetic insertion layer/second non-magnetic coupling layer/second magnetic layer is sandwiched between the first and second non-magnetic layers and stacked so that a magnetic coupling force is generated between the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: October 4, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Koichi Nishioka, Tetsuo Endoh, Shoji Ikeda, Hiroaki Honjo, Hideo Sato, Hideo Ohno
  • Patent number: 11430498
    Abstract: The present invention provides a magnetoresistance effect element with a high read operation speed, a magnetic memory array, a magnetic memory device, and a write method for a magnetoresistance effect element.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 30, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Yoshiaki Saito, Shoji Ikeda, Tetsuo Endoh
  • Patent number: 11417378
    Abstract: An integrated circuit device of the invention, includes: a first resistance variable memory element provided on a semiconductor substrate; a second resistance variable memory element provided on the semiconductor substrate; and a semiconductor circuit for controlling write and read of the first resistance variable memory element and the second resistance variable memory element, which is provided on the semiconductor substrate, in which the second resistance variable memory element has a write current that is smaller than a write current of the first resistance variable memory element, and the second resistance variable memory element is disposed farther from the semiconductor substrate than the first resistance variable memory element.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: August 16, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Tetsuo Endoh, Shoji Ikeda, Hiroki Koike
  • Publication number: 20220115440
    Abstract: Provided are a magnetic stacked film that is capable of improving a write efficiency, and a magnetic memory element and a magnetic memory using the magnetic stacked film. A magnetic stacked film 1 is a stacked film for a magnetic memory element 100, and includes: a heavy metal layer 2 that contains ? phase W1-xTax (0.00<x?0.30); and a recording layer 10 that includes a ferromagnetic layer 18 having a reversible magnetization direction and is adjacent to the heavy metal layer 2, in which a thickness of the heavy metal layer 2 is 2 nm or more and 8 nm or less.
    Type: Application
    Filed: October 30, 2019
    Publication date: April 14, 2022
    Inventors: Yoshiaki Saito, Shoji Ikeda, Hideo Sato, Tetsuo Endoh
  • Patent number: 11264565
    Abstract: An object of the invention is to provide a magnetoresistance effect element which includes a reference layer having three or more magnetic layers and which improves a thermal stability factor ? by decreasing a write error rate using an element structure that enables a wide margin to be secured between a current at which magnetization of the reference layer is reversed and a writing current Ic of a recording layer and by reducing an effect of a stray magnetic field from the reference layer. The magnetoresistance effect element includes: a first recording layer (A1); a first non-magnetic layer (11); and a first reference layer (B1), wherein the first reference layer (B1) including n-number of a plurality of magnetic layers (21, 22, . . . , 2n) and (n?1)?number of a plurality of non-magnetic insertion layers (31, 32, . . . 3(n?1)) adjacently sandwiched by each of the plurality of magnetic layers, where n?3.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: March 1, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Hiroaki Honjo, Tetsuo Endoh, Hideo Sato, Shoji Ikeda
  • Patent number: 11258006
    Abstract: Provided are a magnetic memory element in which an improvement in properties, such as an improvement in coercive properties or a reduction in a leak current, can be attained, a method for producing the same, and a magnetic memory. The magnetic memory element, includes: a columnar stack ST in which a reference layer FX having a fixed magnetization direction, a barrier layer TL including a non-magnetic body, and a recording layer FR having a reversible magnetization direction are stacked in this order; and an insulating film which contains nitrogen and is provided to cover a lateral surface of the columnar stack, in which in one or both of the recording layer and the barrier layer, a nitrogen concentration is 7×1030 atoms/m2 or more in a position of 2 nm inside from an outer circumferential end of the columnar stack.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: February 22, 2022
    Assignee: TOHOKU UNIVERSITY
    Inventors: Tetsuo Endoh, Masaaki Niwa, Hiroaki Honjo, Hideo Sato, Shoji Ikeda, Toshinari Watanabe
  • Publication number: 20220052111
    Abstract: Provided are a magnetic film, a magnetoresistance effect element and a magnetic memory which take advantages of atop-pinned structure and a bottom-pinned structure, maintain perpendicular magnetic anisotropy of magnetic layers in a fixing layer and allow strong pinning even in an annealing treatment after a protective film is formed. A fixing layer of a magnetic film has a basic configuration in which a first magnetic layer (21), a first non-magnetic layer (31), a first Pt layer (41), a second magnetic layer (22) disposed adjacent to each other in this order. The magnetization directions of the first magnetic layer (21) and the second magnetic layer (22) are both a direction perpendicular to the film surface, and an antiferromagnetic coupling is formed between the first magnetic layer (21) and the second magnetic layer (22).
    Type: Application
    Filed: August 11, 2021
    Publication date: February 17, 2022
    Inventors: Yoshiaki SAITO, Shoji IKEDA, Tetsuo ENDOH
  • Publication number: 20210399208
    Abstract: For implementation of a magnetoresistance effect element having a quadruple interface, a magnetoresistance effect element having a small resistance area product RA, a high magnetoresistance ratio, and a high effective magnetic anisotropy energy density Kefft* is provided. A magnetoresistance effect element includes a first reference layer (B1), a first junction layer (11), a first divided recording layer (2), a second junction layer (12), a second divided recording layer (3), and a third junction layer (13). The first divided recording layer (2) has a configuration having a high magnetoresistance ratio (MR ratio), and the second divided recording layer (3) has a configuration having a high effective magnetic anisotropy energy density (Kefft).
    Type: Application
    Filed: August 30, 2019
    Publication date: December 23, 2021
    Inventors: Koichi NISHIOKA, Tetsuo ENDOH, Shoji IKEDA, Hideo SATO, Hiroaki HONJO