Patents by Inventor Shom Ponoth

Shom Ponoth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9171757
    Abstract: A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 27, 2015
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc., COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Bruce B. Doris, Shom Ponoth, Prasanna Khare, Qing Liu, Nicolas Loubet, Maud Vinet
  • Patent number: 9159653
    Abstract: A structure and method of making the structure. The structure includes a dielectric layer on a substrate; a first wire formed in a first trench in the dielectric layer, a first liner on sidewalls and a bottom of the first trench and a first copper layer filling all remaining space in the first trench; a second wire formed in a second trench in the dielectric layer, a second liner on sidewalls and a bottom of the second trench and a second copper layer filling all remaining space in the second trench; and an electromigration stop formed in a third trench in the dielectric layer, a third liner on sidewalls and a bottom of the third trench and a third copper layer filling all remaining space in the third trench, the electromigration stop between and abutting respective ends of the first and second wires.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: October 13, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chih-Chao Yang, Marc A. Bergendahl, David V. Horak, Baozhen Li, Shom Ponoth
  • Publication number: 20150289361
    Abstract: A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 8, 2015
    Inventors: Daniel C. Edelstein, David V. Horak, Elbert E. Huang, Satyanarayana V. Nitta, Takeshi Nogami, Shom Ponoth, Terry A. Spooner
  • Publication number: 20150270262
    Abstract: One method disclosed herein includes, among other things, forming a line-end protection layer in an opening on an entirety of each opposing, spaced-apart first and second end face surfaces of first and second spaced-apart gate electrode structures, respectively, and forming a sidewall spacer adjacent opposing sidewall surfaces of each of the gate electrode structures but not adjacent the opposing first and second end face surfaces having the line-end protection layer positioned thereon.
    Type: Application
    Filed: June 5, 2015
    Publication date: September 24, 2015
    Inventors: Ruilong Xie, Shom Ponoth, Juntao Li
  • Patent number: 9141749
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial conductive material layer. The method also includes forming a trench in the sacrificial conductive material layer. The method further includes forming a conductive feature in the trench. The method additionally includes removing the sacrificial conductive material layer selective to the conductive feature. The method also includes forming an insulating layer around the conductive feature to embed the conductive feature in the insulating layer.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 22, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20150263046
    Abstract: A semiconductor device includes a silicon-on-insulator (SOI) substrate having a buried oxide (BOX) layer, and a plurality of semiconductor fins formed on the BOX layer. The plurality of semiconductor fins include at least one pair of fins defining a BOX region therebetween. Gate lines are formed on the SOI substrate and extend across the plurality of semiconductor fins. Each gate line initially includes a dummy gate and a hardmask. A high dielectric (high-k) layer is formed on the hardmask and the BOX regions. At least one spacer is formed on each gate line such that the high-k layer is disposed between the spacer and the hardmask. A replacement gate process replaces the hardmask and the dummy gate with a metal gate. The high-k layer is ultimately removed from the gate line, while the high-k layer remains on the BOX region.
    Type: Application
    Filed: May 28, 2015
    Publication date: September 17, 2015
    Inventors: Kangguo Cheng, Ali Khakifirooz, Shom Ponoth, Raghavasimhan Sreenivasan
  • Publication number: 20150255538
    Abstract: Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 10, 2015
    Inventors: Bruce B. Doris, Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Pranita Kerber, Arvind Kumar, Shom Ponoth
  • Publication number: 20150235909
    Abstract: A method for fabricating a field effect transistor device includes removing a portion of a first semiconductor layer and a first insulator layer to expose a portion of a second semiconductor layer, wherein the second semiconductor layer is disposed on a second insulator layer, the first insulator layer is disposed on the second semiconductor layer, and the first semiconductor layer is disposed on the first insulator layer, removing portions of the first semiconductor layer to form a first fin disposed on the first insulator layer and removing portions of the second semiconductor layer to form a second fin disposed on the second insulator layer, and forming a first gate stack over a portion of the first fin and forming a second gate stack over a portion of the second fin.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 20, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150228672
    Abstract: A method for fabricating a field effect transistor device includes removing a portion of a first semiconductor layer and a first insulator layer to expose a portion of a second semiconductor layer, wherein the second semiconductor layer is disposed on a second insulator layer, the first insulator layer is disposed on the second semiconductor layer, and the first semiconductor layer is disposed on the first insulator layer, removing portions of the first semiconductor layer to form a first fin disposed on the first insulator layer and removing portions of the second semiconductor layer to form a second fin disposed on the second insulator layer, and forming a first gate stack over a portion of the first fin and forming a second gate stack over a portion of the second fin.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 9105641
    Abstract: The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Shyng-Tsong Chen, Samuel S. Choi, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Wai-Kin Li, Christopher J. Penny, Shom Ponoth, Chih-Chao Yang, Yunpeng Yin
  • Patent number: 9105617
    Abstract: One method disclosed herein includes, among other things, forming a line-end protection layer in an opening on an entirety of each opposing, spaced-apart first and second end face surfaces of first and second spaced-apart gate electrode structures, respectively, and forming a sidewall spacer adjacent opposing sidewall surfaces of each of the gate electrode structures but not adjacent the opposing first and second end face surfaces having the line-end protection layer positioned thereon.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: August 11, 2015
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ruilong Xie, Shom Ponoth, Juntao Li
  • Patent number: 9105606
    Abstract: A semiconductor device is provided that includes a gate structure that is present on a channel portion of a semiconductor substrate that is present between a source region and a drain region. The gate structure includes at least a gate conductor and a gate sidewall spacer that is adjacent to the at least one gate conductor. An upper surface of the gate conductor is recessed relative to an upper surface of the gate sidewall spacer. A multi-layered cap is present on the upper surface of the gate conductor. The multi-layered cap includes a high-k dielectric material and a dielectric cap spacer that is present on a portion of the high-k dielectric material that is present on the sidewall of the gate sidewall spacer.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Shom Ponoth, Raghavasimhan Sreenivasan
  • Patent number: 9105693
    Abstract: A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, David V. Horak, Elbert E. Huang, Satyanarayana V. Nitta, Takeshi Nogami, Shom Ponoth, Terry A. Spooner
  • Publication number: 20150221631
    Abstract: Integrated passive devices for silicon on insulator (SOI) FinFET technologies and methods of manufacture are disclosed. The method includes forming a passive device on a substrate on insulator material. The method further includes removing a portion of the insulator material to expose an underside surface of the substrate on insulator material. The method further includes forming material on the underside surface of the substrate on insulator material, thereby locally thickening the substrate on insulator material under the passive device.
    Type: Application
    Filed: April 15, 2015
    Publication date: August 6, 2015
    Inventors: Thomas N. Adam, Kangguo Cheng, Balasubramanian Pranatharthi Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150221591
    Abstract: A method is provided that includes first etching a substrate according to a first mask. The first etching forms a first etch feature in the substrate to a first depth. The first etching also forms a sliver opening in the substrate. The sliver opening may then be filled with a fill material. A second mask may be formed by removing a portion of the first mask. The substrate exposed by the second mask may be etched with a second etch, in which the second etching is selective to the fill material. The second etching extends the first etch feature to a second depth that is greater than the first depth, and the second etch forms a second etch feature. The first etch feature and the second etch feature may then be filled with a conductive metal.
    Type: Application
    Filed: April 16, 2015
    Publication date: August 6, 2015
    Inventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20150221549
    Abstract: Methods for achieving advanced patterning of an interconnect dielectric material layer are provided in which the dimension, i.e., width, of an opening that is formed into a metallic hard mask layer is shrunk prior to extending the opening into the interconnect dielectric material layer. The shrinking of the dimension of the opening that is formed into the metallic hard mask layer can be achieved in the present application by forming at least a metallic hard mask spacer portion on a sidewall surface of each patterned metallic hard mask layer. The aforementioned basic principle can be applied to forming a line opening, a via opening and/or a combined via and line opening within an interconnect dielectric material layer, wherein each of the openings (line, via and/or via and line) has a reduced dimension as compared to that obtainable utilizing conventional lithography.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 6, 2015
    Applicant: International Business Machines Corporation
    Inventors: Shom Ponoth, Chih-Chao Yang
  • Patent number: 9093564
    Abstract: Integrated passive devices for silicon on insulator (SOI) FinFET technologies and methods of manufacture are disclosed. The method includes forming a passive device on a substrate on insulator material. The method further includes removing a portion of the insulator material to expose an underside surface of the substrate on insulator material. The method further includes forming material on the underside surface of the substrate on insulator material, thereby locally thickening the substrate on insulator material under the passive device.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: July 28, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Thomas N. Adam, Balasubramanian Pranatharthi Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150206885
    Abstract: Trench capacitors can be formed between lengthwise sidewalls of semiconductor fins, and source and drain regions of access transistors are formed in the semiconductor fins. A dummy gate structure is formed between end walls of a neighboring pair of semiconductor fins, and limits the lateral extent of raised source and drain regions that are formed by selective epitaxy. The dummy gate structure prevents electrical shorts between neighboring semiconductor fins. Gate spacers can be formed around gate structures and the dummy gate structures. The dummy gate structures can be replaced with dummy replacement gate structures or dielectric material portions, or can remain the same without substitution of any material. The dummy gate structures may consist of at least one dielectric material, or may include electrically floating conductive material portions.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 23, 2015
    Applicant: International Business Machines Corporation
    Inventors: John E. Barth, Jr., Kangguo Cheng, Bruce B. Doris, Herbert L. Ho, Ali Khakifirooz, Babar A. Khan, Shom Ponoth, Kern Rim, Kehan Tian, Reinaldo A. Vega
  • Publication number: 20150206844
    Abstract: Integrated circuits and methods of forming integrated circuits are provided. An integrated circuit includes a gate electrode structure overlying a base substrate. The gate electrode structure includes a gate electrode, with a cap disposed over the gate electrode and sidewall spacers disposed adjacent to sidewalls of the gate electrode structure. A source and drain region are formed in the base substrate aligned with the gate electrode structure. A first dielectric layer is disposed adjacent to the sidewall spacers. The sidewall spacers and the cap have recessed surfaces below a top surface of the first dielectric layer, and a protecting layer is disposed over the recessed surfaces. A second dielectric layer is disposed over the first dielectric layer and the protecting layer. Electrical interconnects are disposed through the first dielectric layer and the second dielectric layer, and the electrical interconnects are in electrical communication with the respective source and drain regions.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 23, 2015
    Applicants: International Business Machines Corporation, Globalfoundries, Inc.
    Inventors: Daniel Thanh Khae Pham, Xiuyu Cai, Bala Subramanian Pranatharthi Haran, Charan Veera Venkata Satya Surisetty, Jin Wook Lee, Shom Ponoth, David V. Horak
  • Patent number: 9082853
    Abstract: An improved bulk FinFET with a punchthrough stopper region, and method of fabrication are disclosed. The dopants used to form the punchthrough stopper are supplied from a shallow trench isolation liner. An anneal diffuses the dopants from the shallow trench isolation liner into the bulk substrate and lower portion of the fins, to form the punchthrough stopper region.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ali Khakifirooz, Shom Ponoth, Ragvahasimhan Sreenivasan