Patents by Inventor Shom Ponoth

Shom Ponoth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150076608
    Abstract: A semiconductor device includes a first device region and second device region of opposite polarity. Each device region includes at least a transistor device and associated epitaxy. A high-k barrier is formed to overlay the first device region epitaxy only. The high-k barrier may include a substantially horizontal portion formed upon a top surface of the first device region epitaxy and a substantially vertical portion formed upon an outer surface of the first device region epitaxy.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ali Khakifirooz, Shom Ponoth, Raghavasimhan Sreenivasan
  • Publication number: 20150069532
    Abstract: One method disclosed herein includes removing a sacrificial gate structure and forming a replacement gate structure in its place, after forming the replacement gate structure, forming a metal silicide layer on an entire upper surface area of each of a plurality of source/drain regions and, with the replacement gate structure in position, forming at least one source/drain contact structure for each of the plurality of source/drain regions, wherein the at least one source/drain contact structure is conductively coupled to a portion of the metal silicide layer and a dimension of the at least one source/drain contact structure in a gate width direction of the transistor is less than a dimension of the source/drain region in the gate width direction.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Applicants: GLOBAL FOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ruilong Xie, Shom Ponoth, Balasubramanian Pranatharthiharan
  • Publication number: 20150064856
    Abstract: Diodes and resistors for integrated circuits are provided. Deep trenches (DTs) are integrated into the diodes and resistors for the purposes of thermal conduction. The deep trenches facilitate conduction of heat from a semiconductor-on-insulator substrate to a bulk substrate. Semiconductor fins may be formed to align with the deep trenches.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian Pranathari Haran, Junjun Li, Shom Ponoth, Theodrus Eduardus Standaert, Tenko Yamashita
  • Publication number: 20150064863
    Abstract: Embodiments of present invention provide a method of forming silicide contacts of transistors. The method includes forming a first set of epitaxial source/drain regions of a first set of transistors; forming a sacrificial epitaxial layer on top of the first set of epitaxial source/drain regions; forming a second set of epitaxial source/drain regions of a second set of transistors; converting a top portion of the second set of epitaxial source/drain regions into a metal silicide and the sacrificial epitaxial layer into a sacrificial silicide layer in a silicidation process wherein the first set of epitaxial source/drain regions underneath the sacrificial epitaxial layer is not affected by the silicidation process; removing selectively the sacrificial silicide layer; and converting a top portion of the first set of epitaxial source/drain regions into another metal silicide.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Praneet Adusumilli, Emre Alptekin, Kangguo Cheng, Shom Ponoth, Balasubramanian Pranatharthiharan
  • Publication number: 20150064855
    Abstract: An improved finFET and method of fabrication using a silicon-on-nothing process flow is disclosed. Nitride spacers protect the fin sides during formation of cavities underneath the fins for the silicon-on-nothing (SON) process. A flowable oxide fills the cavities to form an insulating dielectric layer under the fins.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Publication number: 20150064874
    Abstract: FinFET structures with dielectric fins and methods of fabrication are disclosed. A gas cluster ion beam (GCIB) tool is used to apply an ion beam to exposed fins, which converts the fins from a semiconductor material such as silicon, to a dielectric such as silicon nitride or silicon oxide. Unlike some prior art techniques, where some fins are removed prior to fin merging, in embodiments of the present invention, fins are not removed. Instead, semiconductor (silicon) fins are converted to dielectric (nitride/oxide) fins where it is desirable to have isolation between groups of fins that comprise various finFET devices on an integrated circuit (IC).
    Type: Application
    Filed: October 30, 2014
    Publication date: March 5, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Publication number: 20150061040
    Abstract: Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Marc Adam Bergendahl, Kangguo Cheng, David Vaclav Horak, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Chih-Chao Yang, Charles William Koburger, III, Xiuyu Cai, Ruilong Xie
  • Publication number: 20150054033
    Abstract: A finFET with self-aligned punchthrough stopper and methods of manufacture are disclosed. The method includes forming spacers on sidewalls of a gate structure and fin structures of a finFET device. The method further includes forming a punchthrough stopper on exposed sidewalls of the fin structures, below the spacers. The method further includes diffusing dopants from the punchthrough stopper into the fin structures. The method further includes forming source and drain regions adjacent to the gate structure and fin structures.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Publication number: 20150054082
    Abstract: Diodes and resistors for integrated circuits are provided. Deep trenches (DTs) are integrated into the diodes and resistors for the purposes of thermal conduction. The deep trenches facilitate conduction of heat from a semiconductor-on-insulator substrate to a bulk substrate. Semiconductor fins may be formed to align with the deep trenches.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Applicant: Intemational Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian Pranatharthi Haran, Junjun Li, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Publication number: 20150054078
    Abstract: One method disclosed herein includes forming a stack of material layers to form gate structures, performing a first etching process to define an opening through the stack of materials that defines an end surface of the gate structures, forming a gate separation structure in the opening and performing a second etching process to define side surfaces of the gate structures. A device disclosed herein includes first and second active regions that include at least one fin, first and second gate structures, wherein each of the gate structures have end surfaces, and a gate separation structure positioned between the gate structures, wherein opposing surfaces of the gate separation structure abut the end surfaces of the gate structures, and wherein an upper surface of the gate separation structure is positioned above an upper surface of the at least one fin.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicants: International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Shom Ponoth, Juntao Li
  • Publication number: 20150041868
    Abstract: A semiconductor device is provided that includes a gate structure that is present on a channel portion of a semiconductor substrate that is present between a source region and a drain region. The gate structure includes at least a gate conductor and a gate sidewall spacer that is adjacent to the at least one gate conductor. An upper surface of the gate conductor is recessed relative to an upper surface of the gate sidewall spacer. A multi-layered cap is present on the upper surface of the gate conductor. The multi-layered cap includes a high-k dielectric material and a dielectric cap spacer that is present on a portion of the high-k dielectric material that is present on the sidewall of the gate sidewall spacer.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventors: Kangguo Cheng, Ali Khakifirooz, Shom Ponoth, Raghavasimhan Sreenivasan
  • Publication number: 20150041905
    Abstract: Disclosed herein are illustrative methods and devices that involve forming spacers with internally trimmed internal surfaces to increase the width of the upper portions of a gate cavity. In some embodiments, the internal surface of the spacer has a stepped cross-sectional configuration or a tapered cross-sectional configuration. In one example, a device is disclosed wherein the P-type work function metal for a PMOS device is positioned only within the lateral space defined by the untrimmed internal surfaces of the spacers, while the work function adjusting metal for the NMOS device is positioned laterally between the lateral spaces defined by both the trimmed and untrimmed internal surfaces of the sidewall spacers.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicants: International Business Machines Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Ruilong Xie, Kisik Choi, Su Chen Fan, Shom Ponoth
  • Publication number: 20150035157
    Abstract: After formation of line openings in a hard mask layer, hard mask level spacers are formed on sidewalls of the hard mask layer. A photoresist is applied and patterned to form a via pattern including a via opening. The overlay tolerance for printing the via pattern is increased by the lateral thickness of the hard mask level spacers. A portion of a dielectric material layer is patterned to form a via cavity pattern by an etch that employs the hard mask layer and the hard mask level spacers as etch masks. The hard mask level spacers are subsequently removed , and the pattern of the line is subsequently transferred into an upper portion of the dielectric material layer, while the via cavity pattern is transferred to a lower portion of the dielectric material layer.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Publication number: 20150035154
    Abstract: The profile of a via can be controlled by forming a profile control liner within each via opening that is formed into a dielectric material prior to forming a line opening within the dielectric material. The presence of the profile control liner within each via opening during the formation of the line opening prevents rounding of the corners of a dielectric material portion that is present beneath the line opening and adjacent the via opening.
    Type: Application
    Filed: September 15, 2014
    Publication date: February 5, 2015
    Inventors: Shyng-Tsong Chen, Samuel S. Choi, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Wai-Kin Li, Christopher J. Penny, Shom Ponoth, Chih-Chao Yang, Yunpeng Yin
  • Patent number: 8946792
    Abstract: FinFET structures with dielectric fins and methods of fabrication are disclosed. A gas cluster ion beam (GCIB) tool is used to apply an ion beam to exposed fins, which converts the fins from a semiconductor material such as silicon, to a dielectric such as silicon nitride or silicon oxide. Unlike some prior art techniques, where some fins are removed prior to fin merging, in embodiments of the present invention, fins are not removed. Instead, semiconductor (silicon) fins are converted to dielectric (nitride/oxide) fins where it is desirable to have isolation between groups of fins that comprise various finFET devices on an integrated circuit (IC).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
  • Patent number: 8946908
    Abstract: Disclosed is a semiconductor structure which includes a semiconductor substrate and a wiring layer on the semiconductor substrate. The wiring layer includes a plurality of fin-like structures comprising a first metal; a first layer of a second metal on each of the plurality of fin-like structures wherein the first metal is different from the second metal, the first layer of the second metal having a height less than each of the plurality of fin-like structures; and an interlayer dielectric (ILD) covering the plurality of fin-like structures and the first layer of the second metal except for exposed edges of the plurality of fin-like structures at predetermined locations, and at locations other than the predetermined locations, the height of the plurality of fin-like structures has been reduced so as to be covered by the ILD.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8946006
    Abstract: A disposable dielectric spacer is formed on sidewalls of a disposable material stack. Raised source/drain regions are formed on planar source/drain regions by selective epitaxy. The disposable dielectric spacer is removed to expose portions of a semiconductor layer between the disposable material stack and the source/drain regions including the raised source/drain regions. Dopant ions are implanted to form source/drain extension regions in the exposed portions of the semiconductor layer. A gate-level dielectric layer is deposited and planarized. The disposable material stack is removed and a gate stack including a gate dielectric and a gate electrode fill a cavity formed by removal of the disposable material stack. Optionally, an inner dielectric spacer may be formed on sidewalls of the gate-level dielectric layer within the cavity prior to formation of the gate stack to tailor a gate length of a field effect transistor.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Shom Ponoth, David V. Horak, Chih-Chao Yang
  • Patent number: 8941156
    Abstract: Embodiments of the present invention provide a method of forming semiconductor structure. The method includes forming a set of device features on top of a substrate; forming a first dielectric layer directly on top of the set of device features and on top of the substrate, thereby creating a height profile of the first dielectric layer measured from a top surface of the substrate, the height profile being associated with a pattern of an insulating structure that fully surrounds the set of device features; and forming a second dielectric layer in areas that are defined by the pattern to create the insulating structure. A structure formed by the method is also disclosed.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 27, 2015
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Marc Adam Bergendahl, Kangguo Cheng, David Vaclav Horak, Ali Khakifirooz, Shom Ponoth, Theodorus Eduardus Standaert, Chih-Chao Yang, Charles William Koburger, III, Xiuyu Cai, Ruilong Xie
  • Patent number: 8941179
    Abstract: FinFETs and fin isolation structures and methods of manufacturing the same are disclosed. The method includes patterning a bulk substrate to form a plurality of fin structures of a first dimension and of a second dimension. The method includes forming oxide material in spaces between the plurality of fin structures of the first dimension and the second dimension. The method includes forming a capping material over sidewalls of selected ones of the fin structures of the first dimension and the second dimension. The method includes recessing the oxide material to expose the bulk substrate on sidewalls below the capping material. The method includes performing an oxidation process to form silicon on insulation fin structures and bulk fin structures with gating. The method further includes forming a gate structure over the SOI fin structures and the bulk fin structures.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: January 27, 2015
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8937359
    Abstract: Embodiments of the invention provide approaches for forming gate and source/drain (S/D) contacts. Specifically, the semiconductor device includes a gate transistor formed over a substrate, a S/D contact formed over a trench-silicide (TS) layer and positioned adjacent the gate transistor, and a gate contact formed over the gate transistor, wherein at least a portion of the gate contact is aligned over the TS layer. This structure enables contact with the TS layer, thereby decreasing the distance between the gate contact and the source/drain, which is desirable for ultra-area-scaling.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: January 20, 2015
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Ruilong Xie, Shom Ponoth, David V. Horak, Balasubramanian Pranatharthiharan