Patents by Inventor Shrawan Singhal

Shrawan Singhal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314672
    Abstract: A method for introducing a customized variation of a geometric parameter in a nanoscale pattern on a substrate. A nanoscale precision programmable profiling process is conducted on one or more regions of the substrate with the nanoscale pattern, where the nanoscale precision programmable profiling process is used to deposit a profiling film with a thickness profile that is a function of the customized variation of the geometric parameter in the nanoscale pattern. The method further comprises conducting a plasma etch process of the profiling film and the material of the nanoscale pattern that converts the thickness profile of the profiling film into the customized variation of the geometric parameter in the nanoscale pattern, where the customized variation is a function of the thickness profile of the profiling film.
    Type: Application
    Filed: June 7, 2021
    Publication date: October 5, 2023
    Inventors: Sidlgata V. Sreenivasan, David Choi, Parth Pandya, Shrawan Singhal
  • Patent number: 11762284
    Abstract: A method for fabricating patterns. An inverse optimization scheme is implemented to determine process parameters used to obtain a desired film thickness of a liquid resist formulation, where the liquid resist formulation includes a solvent and one or more non-solvent components. A substrate is covered with a substantially continuous film of the liquid resist formulation using one or more of the following techniques: dispensing discrete drops of a diluted monomer on the substrate using an inkjet and allowing the dispensed drops to spontaneously spread and merge, slot die coating and spin-coating. The liquid resist formulation is diluted in the solvent. The solvent is then substantially evaporated from the liquid resist formulation forming a film. A gap between a template and the substrate is then closed. The film is cured to polymerize the film and the substrate is separated from the template leaving the polymerized film on the substrate.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 19, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn
  • Publication number: 20230185000
    Abstract: A method for fabricating one or more elements in a multi-lens column. Drops of ultraviolet (UV)-curable liquid are dispensed by an inkjet on a substrate, which may be supported by a chuck. A non-uniform liquid film is then formed, such as by spreading and merging of the inkjetted drops. The film is then locally heated, such as by using a digital micromirror device array. The film is then cured by exposing it to UV light, where the cured film together with the substrate form an element of the multi-lens column. The substrate is then brought to a metrology station where optical metrology is performed on the cured film and the substrate for quality control.
    Type: Application
    Filed: May 18, 2021
    Publication date: June 15, 2023
    Inventors: Shrawan Singhal, Sidlgata V. Sreenivasan
  • Patent number: 11669009
    Abstract: A method for fabricating patterns on a flexible substrate in a roll-to-roll configuration. Drops of a monomer diluted in a solvent are dispensed on a substrate, where the drops spontaneously spread and merge with one another to form a liquid resist formulation. The solvent is evaporated (e.g., blanket evaporation) from the liquid resist formulation followed by selective multi-component resist film evaporation resulting in a non-uniform and substantially continuous film on the substrate. The gap between the film on the substrate and a template is closed such that the film fills the features of the template. After cross-linking the film to polymerize the film, the template is separated from the substrate thereby leaving the polymerized film on the substrate.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 6, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Paras Ajay, Ofodike Ezekoye
  • Publication number: 20230116581
    Abstract: A method for fabricating a three-dimensional (3D) stacked integrated circuit. Pick-and-place strategies are used to stack the source wafers with device layers fabricated using standard two-dimensional (2D) semiconductor fabrication technologies. The source wafers may be stacked in either a sequential or parallel fashion. The stacking may be in a face-to-face, face-to-back, back-to-face or back-to-back fashion. The source wafers that are stacked in a face-to-back, back-to-face or back-to-back fashion may be connected using Through Silicon Vias (TSVs). Alternatively, source wafers that are stacked in a face-to-face fashion may be connected using Inter Layer Vias (ILVs).
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Ovadia Abed, Mark McDermott, Jaydeep Kulkarni, Shrawan Singhal
  • Publication number: 20230095675
    Abstract: A method, computer program product and system for precision inkjet printing. A control variable vector of actuation parameters associated with an inkjet waveform is determined. A printhead is then actuated to eject a grid of droplets from an inkjet onto a substrate based on the inkjet waveform. An image of the grid of droplets on the substrate is acquired. The acquired image is then processed to calculate a fitness function of the inkjet waveform that includes a function of sensed output variables associated with printing characteristics. The control variable vector is then adjusted by updating its topology based on the fitness function to obtain an optimized control variable vector associated with an optimized inkjet waveform.
    Type: Application
    Filed: March 25, 2021
    Publication date: March 30, 2023
    Inventors: Sidlgata V. Sreenivasan, Brent Snyder, Shrawan Singhal
  • Publication number: 20230088746
    Abstract: A method and system for nanoscale precision programmable profiling on substrates. Profiling material is dispensed on a substrate or a superstrate. The superstrate is brought in contact with the substrate. The profiling material is then cured after bringing the superstrate in contact with the substrate. The superstrate is separated from the substrate after curing. An optical metrology of points on the substrate corresponding to the final substrate profile is then performed.
    Type: Application
    Filed: February 25, 2021
    Publication date: March 23, 2023
    Inventors: Sidlgata V. Sreenivasan, Parth Pandya, David Choi, Shrawan Singhal, Lawrence Dunn
  • Patent number: 11600525
    Abstract: A method for fabricating a three-dimensional (3D) stacked integrated circuit. Pick-and-place strategies are used to stack the source wafers with device layers fabricated using standard two-dimensional (2D) semiconductor fabrication technologies. The source wafers may be stacked in either a sequential or parallel fashion. The stacking may be in a face-to-face, face-to-back, back-to-face or back-to-back fashion. The source wafers that are stacked in a face-to-back, back-to-face or back-to-back fashion may be connected using Through Silicon Vias (TSVs). Alternatively, source wafers that are stacked in a face-to-face fashion may be connected using Inter Layer Vias (ILVs).
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 7, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Ovadia Abed, Mark McDermott, Jaydeep Kulkarni, Shrawan Singhal
  • Publication number: 20230042873
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise moiré alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Application
    Filed: October 4, 2022
    Publication date: February 9, 2023
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Patent number: 11469131
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise more alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: October 11, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Publication number: 20220229361
    Abstract: A method and system for configuring ultraviolet (UV)-based nanoimprint lithography (NIL) for roll-to-roll (R2R) processing, which combines the benefits of inexpensive R2R processing with the precise nanoscale patterning afforded by NIL. Furthermore, an R2R fabrication process is used to create nanoscale copper (Cu) metal mesh electrodes on flexible polycarbonate substrates and rigid quartz substrates employing jet-and-flash nanoimprint lithography (J-FIL), linear ion source etching (LIS) and selective electroless Cu metallization (ECu) using a palladium (Pd) seed layer.
    Type: Application
    Filed: May 13, 2020
    Publication date: July 21, 2022
    Inventors: Sidlgata V. Sreenivasan, Parth Pandya, Shrawan Singhal, Paras Ajay, Ziam Ghaznavi, Ovadia Abed, Michael Watts
  • Publication number: 20220013417
    Abstract: Various embodiments of the present technology generally relate to substrate planarization. More specifically, some embodiments of the present technology relate a versatile systems and methods for precision surface topography optimization known as planarization on nominally planar substrates. In some embodiments, a method for planarization of a patterned substrate using inkjets can determine the global and nanoscale topography and pattern information of the patterned substrate. Based upon the global and nanoscale topography and pattern information, a drop pattern can be determined and then dispensed on the patterned substrate. A gap between the patterned substrate and a superstrate causing the dispensed drops can be closed to form a substantially contiguous film. The substantially contiguous film can be cured and the superstrate can be separated from the patterned substrate with substantially contiguous film on the patterned substrate.
    Type: Application
    Filed: December 13, 2019
    Publication date: January 13, 2022
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Lawrence R. Dunn
  • Publication number: 20210389666
    Abstract: A method for fabricating patterns. An inverse optimization scheme is implemented to determine process parameters used to obtain a desired film thickness of a liquid resist formulation, where the liquid resist formulation includes a solvent and one or more non-solvent components. A substrate is covered with a substantially continuous film of the liquid resist formulation using one or more of the following techniques: dispensing discrete drops of a diluted monomer on the substrate using an inkjet and allowing the dispensed drops to spontaneously spread and merge, slot die coating and spin-coating. The liquid resist formulation is diluted in the solvent. The solvent is then substantially evaporated from the liquid resist formulation forming a film. A gap between a template and the substrate is then closed. The film is cured to polymerize the film and the substrate is separated from the template leaving the polymerized film on the substrate.
    Type: Application
    Filed: August 3, 2017
    Publication date: December 16, 2021
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn
  • Publication number: 20210366771
    Abstract: A method for fabricating a three-dimensional (3D) stacked integrated circuit. Pick-and-place strategies are used to stack the source wafers with device layers fabricated using standard two-dimensional (2D) semiconductor fabrication technologies. The source wafers may be stacked in either a sequential or parallel fashion. The stacking may be in a face-to-face, face-to-back, back-to-face or back-to-back fashion. The source wafers that are stacked in a face-to-back, back-to-face or back-to-back fashion may be connected using Through Silicon Vias (TSVs). Alternatively, source wafers that are stacked in a face-to-face fashion may be connected using Inter Layer Vias (ILVs).
    Type: Application
    Filed: December 21, 2018
    Publication date: November 25, 2021
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Ovadia Abed, Mark McDermott, Jaydeep Kulkarni, Shrawan Singhal
  • Publication number: 20210341833
    Abstract: A method for fabricating patterns on a flexible substrate in a roll-to-roll configuration. Drops of a monomer diluted in a solvent are dispensed on a substrate, where the drops spontaneously spread and merge with one another to form a liquid resist formulation. The solvent is evaporated (e.g., blanket evaporation) from the liquid resist formulation followed by selective multi-component resist film evaporation resulting in a non-uniform and substantially continuous film on the substrate. The gap between the film on the substrate and a template is closed such that the film fills the features of the template. After cross-linking the film to polymerize the film, the template is separated from the substrate thereby leaving the polymerized film on the substrate.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 4, 2021
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Paras Ajay, Ofodike Ezekoye
  • Publication number: 20210134640
    Abstract: A method for assembling heterogeneous components. The assembly process includes using a vacuum based pickup mechanism in conjunction with sub-nm precise more alignment techniques resulting in highly accurate, parallel assembly of feedstocks.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 6, 2021
    Inventors: Sidlgata V. Sreenivasan, Paras Ajay, Aseem Sayal, Mark McDermott, Shrawan Singhal, Ovadia Abed, Lawrence Dunn, Vipul Goyal, Michael Cullinan
  • Patent number: 10816482
    Abstract: The present disclosure regards a large area functional metrology system for inspecting nanophotonic devices. The large area functional metrology system can include one or more light sources, optical components such as lenses and polarizers, and one or more camera sensors. The light source can irradiate light onto a nanophotonic device while the optical components can guide the light through the system and modulate states of the light. The camera sensor can record images of the nanophotonic device interacting with the irradiated light. The images can be taken as a function of one or more states. The system can also include a detector which can processes the images in order to detect defects. The defects can then be classified using one or more defect signatures. Based on this classification, the root causes of the defects can be automatically identified.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: October 27, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventors: S. V. Sreenivasan, Brian Gawlik, Shrawan Singhal
  • Patent number: 10717646
    Abstract: A method and alignment system for minimizing errors in the deposition of films of tailored thickness. A first position on a stage is identified for optimal placement of a downward looking microscope (DLM) and an upward looking microscope (ULM) when alignment marks on the DLM and ULM are aligned, where the DLM is attached to a bridge and the ULM is attached to the stage. A second position on the stage is identified when the ULM on the stage is aligned with the alignment marks on a metrology tool. A surface of a chucked substrate affixed to the stage is then measured. A map between a substrate coordinate system and a metrology coordinate system may then be obtained using the measured surface of the chucked substrate with the first and second positions.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: July 21, 2020
    Assignee: Board of Regents, The University of Texas System
    Inventors: Sidlgata V. Sreenivasan, Shrawan Singhal
  • Publication number: 20200105154
    Abstract: A portable system to enable broad access to micro- and nano-scale technologies. The portable system includes a fabrication module configured to enable creation of a small tech device or structure or to enable demonstration of a small tech process. The portable system further includes a metrology module configured to allow measuring, testing or characterizing a property of the small tech device, structure or process. Furthermore, the portable system includes a quality control module configured to validate results from the metrology module against a set of expected results measured independently. The portable system is used for the design and assembly of a prototype tool with all the functionalities or a subset of functionalities present in a master tool used in a small tech factory.
    Type: Application
    Filed: May 16, 2018
    Publication date: April 2, 2020
    Inventors: Sidlgata V. Sreenivasan, Ovadia Abed, Lawrence R. Dunn, Aseem Sayal, Shrawan Singhal
  • Publication number: 20190250107
    Abstract: The present disclosure regards a large area functional metrology system for inspecting nanophotonic devices. The large area functional metrology system can include one or more light sources, optical components such as lenses and polarizers, and one or more camera sensors. The light source can irradiate light onto a nanophotonic device while the optical components can guide the light through the system and modulate states of the light. The camera sensor can record images of the nanophotonic device interacting with the irradiated light. The images can be taken as a function of one or more states. The system can also include a detector which can processes the images in order to detect defects. The defects can then be classified using one or more defect signatures. Based on this classification, the root causes of the defects can be automatically identified.
    Type: Application
    Filed: October 26, 2017
    Publication date: August 15, 2019
    Applicant: Board of Regents, The University Of Texas System
    Inventors: S. V. Sreenivasan, Brian Gawlik, Shrawan Singhal