Patents by Inventor Shu Jiang

Shu Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210291863
    Abstract: In one embodiment, an ADV is routed by executing a first driving scenario that is active. The first driving scenario is one of a plurality of driving scenario types, each driving scenario type being associated with one or more stages to be executed while a corresponding driving scenario type is active. Based on an environmental condition around the ADV, a second driving scenario is set as active. The ADV is routed by executing the second driving scenario. When the second driving scenario exits, execution of the first driving scenario resumes at the one or more stages of the first driving scenario that remains to be executed.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: JIAMING TAO, QI LUO, JINYUN ZHOU, KECHENG XU, YU WANG, SHU JIANG, JIANGTAO HU, JINGHAO MIAO
  • Publication number: 20210261160
    Abstract: Systems and methods are disclosed for reducing second order dynamics delays in a control subsystem (e.g. throttle, braking, or steering) in an autonomous driving vehicle (ADV). A control input is received from an ADV perception and planning system. The control input is translated in a control command to a control subsystem of the ADV. A reference actuation output is obtained from a storage of the ADV. The reference actuation output is a smoothed output that accounts for second order actuation dynamic delays attributable to the control subsystem actuator. Based on a difference between the control input and the reference actuation output, adaptive gains are determined and applied to the input control signal to reduce error between the control output and the reference actuation output.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 26, 2021
    Inventors: Yu WANG, Qi LUO, Shu JIANG, Jinghao MIAO, Jiangtao HU, Jingao WANG, Jinyun ZHOU, Jiaxuan XU
  • Publication number: 20210253118
    Abstract: Systems and methods are disclosed for identifying time-latency and subsystem control actuation dynamic delay due to second order dynamics that are neglected in control systems of the prior art. Embodiments identify time-latency and subsystem control actuation delays by developing a discrete-time dynamic model having parameters and estimating the parameters using a least-squares method over selected crowd-driving data. After estimating the model parameters, the model can be used to identify dynamic actuation delay metrics such as time-latency, rise time, settling time, overshoot, bandwidth, and resonant peak of the control subsystem. Control subsystems can include steering, braking, and throttling.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 19, 2021
    Inventors: Yu WANG, Qi LUO, Shu JIANG, Jinghao MIAO, Jiangtao HU, Jingao WANG, Jinyun ZHOU, Jiaxuan XU
  • Publication number: 20210229678
    Abstract: Systems and methods are disclosed for collecting driving data from simulated autonomous driving vehicle (ADV) driving sessions and real-world ADV driving sessions. The driving data is processed to exclude manual (human) driving data and to exclude data corresponding to the ADV being stationary (not driving). Data can further be filtered based on driving direction: forward or reverse driving. Driving data records are time stamped. The driving data can be aligned according to the timestamp, then a standardized set of metrics is generated from the collected, filtered, and time-aligned data. The standardized set of metrics are used to grade the performance the control system of the ADV, and to generate an updated ADV controller, based on the standardized set of metrics.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 29, 2021
    Inventors: Yu WANG, Qi LUO, Yu CAO, Feng Zongbao, Lin LONGTAO, Xiao XIANGQUAN, Jinghao MIAO, Jingtao HU, Jingao WANG, Shu JIANG, Jinyun ZHOU, Jiaxuan XU
  • Patent number: 11061403
    Abstract: A driving environment is perceived based on sensor data obtained from a plurality of sensors mounted on the ADV. In response to a request for changing lane from a first lane to a second lane, path planning is performed. The path planning includes identifying a first lane change point for the ADV to change from the first lane to the second lane in a first trajectory of the ADV, determining a lane change preparation distance with respect to the first lane change point, and generating a second trajectory based on the lane change preparation distance, where the second trajectory having a second lane change point delayed from the first lane change point. Speed planning is performed on the second trajectory to control the ADV to change lane according to the second trajectory with different speeds at different point in time.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: July 13, 2021
    Assignee: BAIDU USA LLC
    Inventors: Jiacheng Pan, Jiaxuan Xu, Jinyun Zhou, Hongyi Sun, Shu Jiang, Jiaming Tao, Yifei Jiang, Jiangtao Hu, Jinghao Miao
  • Publication number: 20210206397
    Abstract: In one embodiment, when an autonomous driving vehicle (ADV) is parked, the ADV can determine, based on criteria, whether to operate in an open-space mode or an on-lane mode. The criteria can include whether the ADV is within a threshold distance and threshold heading relative to a vehicle lane. If the criteria are not satisfied, then the ADV can enter the open-space mode. While in the open-space mode, the ADV can maneuver it is within the threshold distance and the threshold heading relative to the vehicle lane. In response to the criteria being satisfied, the ADV can enter and operate in the on-lane mode for the ADV to resume along the vehicle lane.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: SHU JIANG, JIAMING TAO, JINYUN ZHOU, QI LUO, JINGHAO MIAO, JIANGTAO HU, JIAXUAN XU, YU WANG
  • Publication number: 20210197865
    Abstract: In one embodiment, an autonomous driving vehicle (ADV) operates in an on-lane mode, where the ADV follows a path along a vehicle lane. In response to determining that the ADV is approaching a dead-end, the ADV switches to an open-space mode. While in the open-space mode, the ADV conducts a three-point turn using a series of steering and throttle commands to generate forward and reverse movements until the ADV is within a) a threshold heading, and b) a threshold distance, relative to the vehicle lane. The ADV can then return to the on-lane mode and resume along the vehicle lane away from the dead-end.
    Type: Application
    Filed: December 26, 2019
    Publication date: July 1, 2021
    Inventors: Jinyun ZHOU, Shu JIANG, Jiaming TAO, Qi LUO, Jinghao MIAO, Jiangtao HU, Jiaxuan XU, Yu WANG
  • Publication number: 20210181742
    Abstract: A driving environment is perceived based on sensor data obtained from a plurality of sensors mounted on the ADV. In response to a request for changing lane from a first lane to a second lane, path planning is performed. The path planning includes identifying a first lane change point for the ADV to change from the first lane to the second lane in a first trajectory of the ADV, determining a lane change preparation distance with respect to the first lane change point, and generating a second trajectory based on the lane change preparation distance, where the second trajectory having a second lane change point delayed from the first lane change point. Speed planning is performed on the second trajectory to control the ADV to change lane according to the second trajectory with different speeds at different point in time.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 17, 2021
    Inventors: JIACHENG PAN, JIAXUAN XU, JINYUN ZHOU, HONGYI SUN, SHU JIANG, JIAMING TAO, YIFEI JIANG, JIANGTAO HU, JINGHAO MIAO
  • Publication number: 20210181738
    Abstract: In one embodiment, a set of predetermined driving parameters is determined from a set of driving statistics data collected from a number of vehicles, which may be driven by human drivers. For each pair of the predetermined driving parameters, a distribution of the pair of driving parameters is plotted based on their relationship on a two-dimensional (2D) distribution space. The 2D distribution space is partitioned into a number of grid cells, each grid cell representing a particular pair of driving parameters. For each of the grid cells, a probability is calculated that the pair of driving parameter likely falls in the grid cell. A grid table is generated corresponding to the pair of driving parameters. The grid table can be utilized during the autonomous driving at real-time or during simulation to determine a ride stability of an autonomous driving vehicle (ADV) in view of the pair of driving parameters.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 17, 2021
    Inventors: YIFEI JIANG, JINYUN ZHOU, JIACHENG PAN, JIAXUAN XU, HONGYI SUN, JIAMING TAO, SHU JIANG, JINGHAO MIAO, JIANGTAO HU
  • Publication number: 20210139038
    Abstract: In one embodiment, a method of generating control effort to control an autonomous driving vehicle (ADV) includes determining a gear position (forward or reverse) in which the ADV is driving and selecting a driving model and a predictive model based upon the gear position. In a forward gear, the driving model is a dynamic model, such as a “bicycle model,” and the predictive model is a look-ahead model. In a reverse gear, the driving model is a hybrid dynamic and kinematic model and the predictive model is a look-back model. A current and predicted lateral error and heading error are determined using the driving model and predictive model, respectively A linear quadratic regulator (LQR) uses the current and predicted lateral error and heading errors, to determine a first control effort, and an augmented control logic determines a second, additional, control effort, to determine a final control effort that is output to a control module of the ADV to drive the ADV.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 13, 2021
    Inventors: Yu WANG, Qi LUO, Shu JIANG, Jinghao MIAO, Jiangtao HU, Jingao WANG, Jinyun ZHOU, Runxin HE, Jiaxuan XU
  • Publication number: 20210116916
    Abstract: A method of navigating an autonomous driving vehicle (ADV) includes determining a target function for an open space model based on one or more obstacles and map information within a proximity of the ADV, then iteratively performing first and second quadratic programming (QP) optimizations on the target function. Then, generating a second trajectory based on results of the first and second QP optimizations to control the ADV autonomously using the second trajectory. The first QP optimization is based on fixing a first set of variables of the target function. The second QP optimization is based on maximizing a sum of the distances from the ADV to each of the obstacles over a plurality of points of the first trajectory, and minimizing a difference between a target end-state of the ADV and a determined final state of the ADV using the first trajectory.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 22, 2021
    Inventors: Runxin HE, Yu WANG, Jinyun ZHOU, Qi LUO, Jinghao MIAO, Jiangtao HU, Jingao WANG, Jiaxuan XU, Shu JIANG
  • Publication number: 20210116915
    Abstract: In one embodiment, a set of parameters representing a first state of an autonomous driving vehicle (ADV) to be simulated and a set of control commands to be issued at a first point in time. In response, a localization predictive model is applied to the set of parameters to determine a first position (e.g., x, y) of the ADV. A localization correction model is applied to the set of parameters to determine a set of localization correction factors (e.g., ?x, ?y). The correction factors may represent the errors between the predicted position of the ADV by the localization predictive model and the ground truth measured by sensors of the vehicle. Based on the first position of the ADV and the correction factors, a second position of the ADV is determined as the simulated position of the ADV.
    Type: Application
    Filed: October 21, 2019
    Publication date: April 22, 2021
    Inventors: SHU JIANG, QI LUO, JINGHAO MIAO, JIANGTAO HU, JIAXUAN XU, JINGAO WANG, YU WANG, JINYUN ZHOU, RUNXIN HE
  • Publication number: 20210094561
    Abstract: In one embodiment, a computer-implemented method for calibrating autonomous driving vehicles at a cloud-based server includes receiving, at the cloud-based server, one or more vehicle calibration requests from at least one user, each vehicle calibration request including calibration data for one or more vehicles and processing in parallel, by the cloud-based server, the one or more vehicle calibration requests for the at least one user to generate a calibration result for each vehicle. The method further includes sending, by the cloud-based server, the calibration result for each vehicle to the at least one user.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: SHU JIANG, QI LUO, JINGHAO MIAO, JIANGTAO HU, XIANGQUAN XIAO, JIAXUAN XU, YU WANG, JINYUN ZHOU, RUNXIN HE
  • Publication number: 20210094550
    Abstract: In one embodiment, an autonomous driving system of an autonomous driving vehicle perceives a driving environment surrounding the autonomous driving vehicle traveling along a path, including perceiving an obstacle in the driving environment. The system detects a vertical acceleration of the autonomous driving vehicle based on sensor data obtained from a sensor on the autonomous driving vehicle. The system further calibrates the perceived obstacle based on the vertical acceleration of the autonomous driving vehicle. The system then controls the autonomous driving vehicle to navigate through the driving environment in view of the calibrated perceived obstacle.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: SHU JIANG, QI LUO, JINGHAO MIAO, JIANGTAO HU, JIAXUAN XU, JINGAO WANG, YU WANG, JINYUN ZHOU, RUNXIN HE
  • Publication number: 20200363814
    Abstract: In one embodiment, a system generates a plurality of driving scenarios to train a reinforcement learning (RL) agent and replays each of the driving scenarios to train the RL agent by: applying a RL algorithm to an initial state of a driving scenario to determine a number of control actions from a number of discretized control/action options for the ADV to advance to a number of trajectory states which are based on a number of discretized trajectory state options, determining a reward prediction by the RL algorithm for each of the controls/actions, determining a judgment score for the trajectory states, and updating the RL agent based on the judgment score.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Inventors: RUNXIN HE, JINYUN ZHOU, QI LUO, SHIYU SONG, JINGHAO MIAO, JIANGTAO HU, YU WANG, JIAXUAN XU, SHU JIANG
  • Publication number: 20200363813
    Abstract: In one embodiment, a system uses an actor-critic reinforcement learning model to generate a trajectory for an autonomous driving vehicle (ADV) in an open space. The system perceives an environment surrounding an ADV. The system applies a RL algorithm to an initial state of a planning trajectory based on the perceived environment to determine a plurality of controls for the ADV to advance to a plurality of trajectory states based on map and vehicle control information for the ADV. The system determines a reward prediction by the RL algorithm for each of the plurality of controls in view of a target destination state. The system generates a first trajectory from the trajectory states by maximizing the reward predictions to control the ADV autonomously according to the first trajectory.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Inventors: Runxin He, Jinyun Zhou, Qi Luo, Shiyu Song, Jinghao Miao, Jiangtao Hu, Yu Wang, Jiaxuan Xu, Shu Jiang
  • Publication number: 20200363801
    Abstract: In one embodiment, an open space model is generated for a system to plan trajectories for an ADV in an open space. The system perceives an environment surrounding an ADV including one or more obstacles. The system determines a target function for the open space model based on constraints for the one or more obstacles and map information. The system iteratively, performs a first quadratic programming (QP) optimization on the target function based on a first trajectory while fixing a first set of variables, and performs a second QP optimization on the target function based on a result of the first QP optimization while fixing a second set of variables. The system generates a second trajectory based on results of the first and the second QP optimizations to control the ADV autonomously according to the second trajectory.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Inventors: RUNXIN HE, JINYUN ZHOU, QI LUO, SHIYU SONG, JINGHAO MIAO, JIANGTAO HU, YU WANG, JIAXUAN XU, SHU JIANG
  • Publication number: 20200356849
    Abstract: In one embodiment, a method of training dynamic models for autonomous driving vehicles includes the operations of receiving a first set of training data from a training data source, the first set of training data representing driving statistics for a first set of features; training a dynamic model based on the first set of training data for the first set of features; determining a second set of features as a subset of the first set of features based on evaluating the dynamic model, each of the second set of features representing a feature whose performance score is below a predetermined threshold. The method further includes the following operations for each of the second set of features: retrieving a second set of training data associated with the corresponding feature of the second set of features, and retraining the dynamic model using the second set of training data.
    Type: Application
    Filed: May 6, 2019
    Publication date: November 12, 2020
    Inventors: JIAXUAN XU, QI LUO, RUNXIN HE, JINYUN ZHOU, JINGHAO MIAO, JIANGTAO HU, YU WANG, SHU JIANG
  • Patent number: D907041
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: January 5, 2021
    Assignee: Shenzhen Colorii TECH Limited
    Inventor: Shu Jiang
  • Patent number: D917489
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: April 27, 2021
    Inventors: Shu Jiang, Jing Peng