Patents by Inventor Shu Xiao

Shu Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951307
    Abstract: Provided herein are methods of generating a biologically effective unipolar nanosecond electric pulse by superposing two biologically ineffective bipolar nanosecond electric pulses and related aspects, such as electroporation and/or therapeutic applications of these methods to non-invasively target electrostimulation (ES) selectively to deep tissues and organs.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: April 9, 2024
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrei G. Pakhomov, Olga N. Pakhomova, Shu Xiao
  • Publication number: 20230329770
    Abstract: A pulse generator discharge circuit is disclosed. The circuit includes one or more discharge stages, each discharge stage including a plurality of control input terminals. The circuit also includes first and second discharge terminals, and a plurality of serially connected switches electrically connected between the first and second discharge terminals, where a conductive state of each of the switches is controlled by a control signal. The circuit also includes a plurality of inductive elements configured to generate the control signals for the serially connected switches, where each inductive element is configured to generate a control signal for one of the serially connected switches in response to one or more input signals at one or more of the control input terminals, and where each of the serially connected switches is configured to receive a control signal from a respective one of the inductive elements.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: Brian G. Athos, Darrin R. Uecker, Shu Xiao
  • Publication number: 20230293231
    Abstract: A sub-microsecond pulsed electric field generator is disclosed. The field generator includes a controller, which generates a power supply control signal and generates a pulse generator control signal, and a power supply, which receives the power supply control signal and generates one or more power voltages based on the received power supply control signal. The field generator also includes a pulse generator which receives the power voltages and the pulse generator control signal, and generates one or more pulses based on the power voltages and based on the pulse generator control signal. In some embodiments, the controller receives feedback signals representing a value of a characteristic of or a result of the pulses and generates at least one of the power supply control signal and the pulse generator control signal based on the received feedback signals.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Applicant: Pulse Biosciences, Inc.
    Inventors: Shu Xiao, Brian G. Athos, Mark P. Kreis, David J. Danitz, Darrin R. Uecker
  • Patent number: 11723712
    Abstract: A pulse generator discharge circuit is disclosed. The circuit includes one or more discharge stages, each discharge stage including a plurality of control input terminals. The circuit also includes first and second discharge terminals, and a plurality of serially connected switches electrically connected between the first and second discharge terminals, where a conductive state of each of the switches is controlled by a control signal. The circuit also includes a plurality of inductive elements configured to generate the control signals for the serially connected switches, where each inductive element is configured to generate a control signal for one of the serially connected switches in response to one or more input signals at one or more of the control input terminals, and where each of the serially connected switches is configured to receive a control signal from a respective one of the inductive elements.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 15, 2023
    Assignee: Pulse Biosciences, Inc.
    Inventors: Brian G. Athos, Darrin R. Uecker, Shu Xiao
  • Patent number: 11696800
    Abstract: A sub-microsecond pulsed electric field generator is disclosed. The field generator includes a controller, which generates a power supply control signal and generates a pulse generator control signal, and a power supply, which receives the power supply control signal and generates one or more power voltages based on the received power supply control signal. The field generator also includes a pulse generator which receives the power voltages and the pulse generator control signal, and generates one or more pulses based on the power voltages and based on the pulse generator control signal. In some embodiments, the controller receives feedback signals representing a value of a characteristic of or a result of the pulses and generates at least one of the power supply control signal and the pulse generator control signal based on the received feedback signals.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: July 11, 2023
    Assignee: Pulse Biosciences, Inc.
    Inventors: Shu Xiao, Brian G. Athos, Mark P. Kreis, David J. Danitz, Darrin R. Uecker
  • Patent number: 11351368
    Abstract: Methods and apparatuses (systems, devices, etc.) for treating biological tissue to evoke one or more desirable biological and/or physiological effects using pulsed electric fields in the sub-microsecond range at very low electric field strength (e.g., less than 1 kV/cm) but at high (e.g., megahertz) frequencies.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: June 7, 2022
    Assignee: Old Dominion University Research Foundation
    Inventors: Andrei G. Pakhomov, Shu Xiao, Olga N. Pakhomova, Maura Casciola
  • Publication number: 20210268274
    Abstract: Provided herein are methods of generating a biologically effective unipolar nanosecond electric pulse by superposing two biologically ineffective bipolar nanosecond electric pulses and related aspects, such as electroporation and/or therapeutic applications of these methods to non-invasively target electrostimulation (ES) selectively to deep tissues and organs.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 2, 2021
    Inventors: Andrei G. PAKHOMOV, Olga N. PAKHOMOVA, Shu XIAO
  • Patent number: 11051882
    Abstract: A sub-microsecond pulsed electric field generator is disclosed. The field generator includes a controller, which generates a power supply control signal and generates a pulse generator control signal, and a power supply, which receives the power supply control signal and generates one or more power voltages based on the received power supply control signal. The field generator also includes a pulse generator which receives the power voltages and the pulse generator control signal, and generates one or more pulses based on the power voltages and based on the pulse generator control signal. In some embodiments, the controller receives feedback signals representing a value of a characteristic of or a result of the pulses and generates at least one of the power supply control signal and the pulse generator control signal based on the received feedback signals.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 6, 2021
    Assignee: Pulse Biosciences, Inc.
    Inventors: Shu Xiao, Brian G. Athos, Mark P. Kreis, David J. Danitz, Darrin R. Uecker
  • Publication number: 20210196375
    Abstract: A sub-microsecond pulsed electric field generator is disclosed. The field generator includes a controller, which generates a power supply control signal and generates a pulse generator control signal, and a power supply, which receives the power supply control signal and generates one or more power voltages based on the received power supply control signal. The field generator also includes a pulse generator which receives the power voltages and the pulse generator control signal, and generates one or more pulses based on the power voltages and based on the pulse generator control signal. In some embodiments, the controller receives feedback signals representing a value of a characteristic of or a result of the pulses and generates at least one of the power supply control signal and the pulse generator control signal based on the received feedback signals.
    Type: Application
    Filed: March 9, 2021
    Publication date: July 1, 2021
    Applicant: Pulse Biosciences, Inc.
    Inventors: Shu Xiao, Brian G. Athos, Mark P. Kreis, David J. Danitz, Darrin R. Uecker
  • Patent number: 11043745
    Abstract: Resistively loaded dielectric biconical antenna apparatuses, including systems and devices, that may be used to transmit very short electrical pulses (e.g., nanosecond, sub-nanosecond, picosecond, etc.) into tissue non-invasively at energy levels sufficient to invoke biological changes in the tissue. These resistively loaded dielectric biconical antenna apparatuses may include a resistor ring reducing internal reflection and reducing energy loss, as well as delivering longer pulses (e.g. microsecond to millisecond) to tissue.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: June 22, 2021
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shu Xiao, Xianbing Zou
  • Patent number: 11020590
    Abstract: Provided herein are methods of generating a biologically effective unipolar nanosecond electric pulse by superposing two biologically ineffective bipolar nanosecond electric pulses and related aspects, such as electroporation and/or therapeutic applications of these methods to non-invasively target electrostimulation (ES) selectively to deep tissues and organs.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 1, 2021
    Assignee: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrei G. Pakhomov, Olga N. Pakhomova, Shu Xiao
  • Publication number: 20210146129
    Abstract: A pulse generation system is disclosed. The pulse generation system includes a controller, an output terminal, and a plurality of pulse generator circuits. The controller is configured to cause a driving signal pulse to be transmitted to any selected one or more of the pulse generator circuits, and to cause the driving signal pulse to not be transmitted to any selected one or more other pulse generator circuits. Each of the pulse generator circuits is configured to generate an output voltage pulse at the output terminal in response to the driving signal pulse being transmitted thereto.
    Type: Application
    Filed: January 26, 2021
    Publication date: May 20, 2021
    Applicant: Pulse Biosciences, Inc.
    Inventors: Brian G. Athos, Shu Xiao, David J. Danitz, Mark P. Kreis, Darrin R. Uecker
  • Patent number: 10946193
    Abstract: A pulse generation system is disclosed. The pulse generation system includes a controller, an output terminal, and a plurality of pulse generator circuits. The controller is configured to cause a driving signal pulse to be transmitted to any selected one or more of the pulse generator circuits, and to cause the driving signal pulse to not be transmitted to any selected one or more other pulse generator circuits. Each of the pulse generator circuits is configured to generate an output voltage pulse at the output terminal in response to the driving signal pulse being transmitted thereto.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: March 16, 2021
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Brian G. Athos, Shu Xiao, David J. Danitz, Mark P. Kreis, Darrin R. Uecker
  • Publication number: 20210038282
    Abstract: A pulse generator discharge circuit is disclosed. The circuit includes one or more discharge stages, each discharge stage including a plurality of control input terminals. The circuit also includes first and second discharge terminals, and a plurality of serially connected switches electrically connected between the first and second discharge terminals, where a conductive state of each of the switches is controlled by a control signal. The circuit also includes a plurality of inductive elements configured to generate the control signals for the serially connected switches, where each inductive element is configured to generate a control signal for one of the serially connected switches in response to one or more input signals at one or more of the control input terminals, and where each of the serially connected switches is configured to receive a control signal from a respective one of the inductive elements.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Applicant: Pulse Biosciences, Inc.
    Inventors: Brian G. Athos, Darrin R. Uecker, Shu Xiao
  • Patent number: 10874451
    Abstract: A pulse generator discharge circuit is disclosed. The circuit includes one or more discharge stages, each discharge stage including a plurality of control input terminals. The circuit also includes first and second discharge terminals, and a plurality of serially connected switches electrically connected between the first and second discharge terminals, where a conductive state of each of the switches is controlled by a control signal. The circuit also includes a plurality of inductive elements configured to generate the control signals for the serially connected switches, where each inductive element is configured to generate a control signal for one of the serially connected switches in response to one or more input signals at one or more of the control input terminals, and where each of the serially connected switches is configured to receive a control signal from a respective one of the inductive elements.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: December 29, 2020
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Brian G. Athos, Darrin R. Uecker, Shu Xiao
  • Publication number: 20200259261
    Abstract: Resistively loaded dielectric biconical antenna apparatuses, including systems and devices, that may be used to transmit very short electrical pulses (e.g., nanosecond, sub-nanosecond, picosecond, etc.) into tissue non-invasively at energy levels sufficient to invoke biological changes in the tissue. These resistively loaded dielectric biconical antenna apparatuses may include a resistor ring reducing internal reflection and reducing energy loss, as well as delivering longer pulses (e.g. microsecond to millisecond) to tissue.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Inventors: Shu XIAO, Xianbing ZOU
  • Patent number: 10660693
    Abstract: Systems and methods for treatment of a biological tissues including target tissues and other tissues. The method includes elevating a temperature of the target tissues above a physiological temperature of the biological tissues to treatment temperature, and generating an electric field extending through at least a portion of the target tissues using a pre-defined sequence of short voltage pulses applied between at least two electrodes. In the method, the treatment temperature is maintained during the generating. Further, the pre-defined sequence is selected such that a magnitude of the electric field generated is sufficient to induce electromanipulation in the portion of the target tissues without substantially elevating of the temperature of the portion of the target tissues above the treatment temperature.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: May 26, 2020
    Assignee: Old Dominion University Research Foundation
    Inventors: Karl H. Schoenbach, Richard Heller, James Camp, Stephen P. Beebe, Shu Xiao, Amy Donate
  • Publication number: 20200147371
    Abstract: Methods and apparatuses (systems, devices, etc.) for treating biological tissue to evoke one or more desirable biological and/or physiological effects using pulsed electric fields in the sub-microsecond range at very low electric field strength (e.g., less than 1 kV/cm) but at high (e.g., megahertz) frequencies.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 14, 2020
    Inventors: Andrei G. PAKHOMOV, Shu XIAO, Olga N. PAKHOMOVA, Maura CASCIOLA
  • Publication number: 20200085498
    Abstract: A sub-microsecond pulsed electric field generator is disclosed. The field generator includes a controller, which generates a power supply control signal and generates a pulse generator control signal, and a power supply, which receives the power supply control signal and generates one or more power voltages based on the received power supply control signal. The field generator also includes a pulse generator which receives the power voltages and the pulse generator control signal, and generates one or more pulses based on the power voltages and based on the pulse generator control signal. In some embodiments, the controller receives feedback signals representing a value of a characteristic of or a result of the pulses and generates at least one of the power supply control signal and the pulse generator control signal based on the received feedback signals.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Applicant: Pulse Biosciences, Inc.
    Inventors: Shu Xiao, Brian G. Athos, Mark P. Kreis, David J. Danitz, Darrin R. Uecker
  • Patent number: 10548665
    Abstract: A sub-microsecond pulsed electric field generator is disclosed. The field generator includes a controller, which generates a power supply control signal and generates a pulse generator control signal, and a power supply, which receives the power supply control signal and generates one or more power voltages based on the received power supply control signal. The field generator also includes a pulse generator which receives the power voltages and the pulse generator control signal, and generates one or more pulses based on the power voltages and based on the pulse generator control signal. The controller receives feedback signals representing a value of a characteristic of or a result of the pulses and generates at least one of the power supply control signal and the pulse generator control signal based on the received feedback signals.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: February 4, 2020
    Assignee: PULSE BIOSCIENCES, INC.
    Inventors: Shu Xiao, Brian G. Athos, Mark P. Kreis, David J. Danitz, Darrin R. Uecker