Patents by Inventor Shunpei Yamazaki

Shunpei Yamazaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140138675
    Abstract: Oxide layers which contain at least one metal element that is the same as that contained in an oxide semiconductor layer including a channel are formed in contact with the top surface and the bottom surface of the oxide semiconductor layer, whereby an interface state is not likely to be generated at each of an upper interface and a lower interface of the oxide semiconductor layer. Further, it is preferable that an oxide layer, which is formed using a material and a method similar to those of the oxide layers be formed over the oxide layers Accordingly, the interface state hardly influences the movement of electrons.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 22, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20140138711
    Abstract: It is an object to provide a flexible light-emitting device with high reliability in a simple way. Further, it is an object to provide an electronic device or a lighting device each mounted with the light-emitting device. A light-emitting device with high reliability can be obtained with the use of a light-emitting device having the following structure: an element portion including a light-emitting element is interposed between a substrate having flexibility and a light-transmitting property with respect to visible light and a metal substrate; and insulating layers provided over and under the element portion are in contact with each other in the outer periphery of the element portion to seal the element portion. Further, by mounting an electronic device or a lighting device with a light-emitting device having such a structure, an electronic device or a lighting device with high reliability can be obtained.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 22, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kaoru Hatano, Masahiro Katayama, Shingo Eguchi, Yoshiaki Oikawa, Ami Nakamura
  • Publication number: 20140139762
    Abstract: There is provided a high quality liquid crystal panel having a thickness with high accuracy, which is designed, without using a particulate spacer, within a free range in accordance with characteristics of a used liquid crystal and a driving method, and is also provided a method of fabricating the same. The shape of a spacer for keeping a substrate interval constant is made such that it is a columnar shape, a radius R of curvature is 2 ?m or less, a height H is 0.5 ?m to 10 ?m, a diameter is 20 ?m or less, and an angle ? is 65° to 115°. By doing so, it is possible to prevent the lowering of an opening rate and the lowering of light leakage due to orientation disturbance.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiharu HIRAKATA, Yuugo GOTO, Yuko KOBAYASHI, Shunpei YAMAZAKI
  • Publication number: 20140139775
    Abstract: A semiconductor device includes: a transistor including a gate electrode, a gate insulating film over the gate electrode, a semiconductor layer over the gate insulating film, and a source electrode and a drain electrode over the semiconductor layer; a first insulating film comprising an inorganic material over the transistor; a second insulating film comprising an organic material over the first insulating film; a first conductive film over the second insulating film and in a region overlapping with the semiconductor layer; a third insulating film comprising an inorganic material over the first conductive film; and a second conductive film over the third insulating film and in a region overlapping with the first conductive film. The absolute value of a first potential applied to the first conductive film is greater than the absolute value of a second potential applied to the second conductive film.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 22, 2014
    Inventors: Hiroyuki MIYAKE, Shunpei YAMAZAKI, Yoshifumi TANADA, Manabu SATO, Toshinari SASAKI, Kenichi OKAZAKI, Junichi KOEZUKA, Takuya MATSUO, Hiroshi MATSUKIZONO, Yosuke KANZAKI, Shigeyasu MORI
  • Publication number: 20140138720
    Abstract: A semiconductor having an active layer; a gate insulating film in contact with the semiconductor; a gate electrode opposite to the active layer through the gate insulating film; a first nitride insulating film formed over the active layer; a photosensitive organic resin film formed on the first nitride insulating film; a second nitride insulating film formed on the photosensitive organic resin film; and a wiring provided on the second, nitride insulating film. A first opening portion is provided in the photosensitive organic resin film, an inner wall surface of the first opening portion is covered with the second nitride insulating film, a second opening portion is provided in a laminate including the gate insulating film, the first nitride insulating film, and the second nitride insulating film inside the first opening portion, and the semiconductor is connected with the wiring through the first opening portion and the second opening portion.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 22, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Satoshi MURAKAMI, Masahiko Hayakawa, Shunpei Yamazaki
  • Patent number: 8729613
    Abstract: The concentration of impurity elements included in an oxide semiconductor film in the vicinity of a gate insulating film is reduced. Further, crystallinity of the oxide semiconductor film in the vicinity of the gate insulating film is improved. A semiconductor device includes an oxide semiconductor film over a substrate, a source electrode and a drain electrode over the oxide semiconductor film, a gate insulating film which includes an oxide containing silicon and is formed over the oxide semiconductor film, and a gate electrode over the gate insulating film. The oxide semiconductor film includes a region in which the concentration of silicon is lower than or equal to 1.0 at. %, and at least the region includes a crystal portion.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tatsuya Honda, Masashi Tsubuku, Yusuke Nonaka, Takashi Shimazu, Shunpei Yamazaki
  • Patent number: 8730419
    Abstract: To provide a display device which has a narrower frame region and which includes a driver circuit not affected by variation in transistor characteristics. A base substrate having an insulating surface to which a single-crystal semiconductor layer is attached is divided into strips and is used for a driver circuit of a display device. Alternatively, a base substrate having an insulating surface to which a plurality of single-crystal semiconductor layers is attached is divided into strips and is used for a driver circuit of a display device. Accordingly, a driver circuit corresponding to a size of a display device can be used for the display device, and a display device which has a narrower frame region and which includes a driver circuit not affected by variation in transistor characteristics can be provided.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8728883
    Abstract: A highly reliable semiconductor device is manufactured by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. An oxide semiconductor film which can have a first crystal structure by heat treatment and an oxide semiconductor film which can have a second crystal structure by heat treatment are formed so as to be stacked, and then heat treatment is performed; accordingly, crystal growth occurs with the use of an oxide semiconductor film having the second crystal structure as a seed, so that an oxide semiconductor film having the first crystal structure is formed. An oxide semiconductor film formed in this manner is used for an active layer of the transistor.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Takahashi, Tetsunori Maruyama
  • Patent number: 8730730
    Abstract: A temporary storage circuit including a reduced number of transistors is provided. The temporary storage circuit includes storage elements, each of which includes a first transistor and a second transistor. A channel of the first transistor is formed in an oxide semiconductor layer. A signal potential corresponding to data is input to a gate of the second transistor through the first transistor which is turned on by a control signal input to a gate of the first transistor. Then, the first transistor is turned off by a control signal input to the gate of the first transistor, so that the signal potential is held in the gate of the second transistor. When one of a source and a drain of the second transistor is set to a first potential, the state between the source and the drain of the second transistor is detected, whereby the data is read out.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 8729550
    Abstract: An object is to reduce the manufacturing cost of a semiconductor device. An object is to improve the aperture ratio of a semiconductor device. An object is to make a display portion of a semiconductor device display a higher-definition image. An object is to provide a semiconductor device which can be operated at high speed. The semiconductor device includes a driver circuit portion and a display portion over one substrate. The driver circuit portion includes: a driver circuit TFT in which source and drain electrodes are formed using a metal and a channel layer is formed using an oxide semiconductor; and a driver circuit wiring formed using a metal. The display portion includes: a pixel TFT in which source and drain electrodes are formed using an oxide conductor and a semiconductor layer is formed using an oxide semiconductor; and a display wiring formed using an oxide conductor.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Hiroyuki Miyake, Hideaki Kuwabara
  • Patent number: 8729548
    Abstract: The present invention supplies a manufacturing method of a semiconductor device, which includes a non-contact inspection process capable of confirming if a circuit or circuit element formed on an array substrate is normally performed and can decrease a manufacturing cost by eliminating wastes to keep a defective product forming. An electromotive force generated by electromagnetic induction is rectified and shaped by using primary coils formed on a check substrate and secondary coils formed on an array substrate, whereby a power source voltage and a driving signal are supplied to circuits or circuit elements on a TFT substrate so as to be driven.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaaki Hiroki, Shunpei Yamazaki
  • Patent number: 8728860
    Abstract: Electrical characteristics of transistors using an oxide semiconductor are greatly varied in a substrate, between substrates, and between lots, and the electrical characteristics are changed due to heat, bias, light, or the like in some cases. In view of the above, a semiconductor device using an oxide semiconductor with high reliability and small variation in electrical characteristics is manufactured. In a method for manufacturing a semiconductor device, hydrogen in a film and at an interface between films is removed in a transistor using an oxide semiconductor. In order to remove hydrogen at the interface between the films, the substrate is transferred under a vacuum between film formations. Further, as for a substrate having a surface exposed to the air, hydrogen on the surface of the substrate may be removed by heat treatment or plasma treatment.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8729620
    Abstract: It is an object to provide a nonvolatile semiconductor memory device having excellent writing property and charge-retention property. A semiconductor layer including a channel forming region between a pair of impurity regions which are formed to be apart from each other is provided. In an upper layer portion thereof, a first insulating layer, a floating gate, a second insulating layer, and a control gate are provided. The floating gate has at least a two-layer structure, and a first layer in contact with the first insulating layer preferably has a band gap smaller than that of the semiconductor layer. Furthermore, by setting an energy level at the bottom of the conduction band of the floating gate lower than that of the channel forming region of the semiconductor layer, injectability of carriers and a charge-retention property can be improved.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yoshinobu Asami, Tamae Takano, Makoto Furuno
  • Patent number: 8729544
    Abstract: It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi, Kengo Akimoto, Kojiro Shiraishi
  • Publication number: 20140131706
    Abstract: With a non-linear element (e.g., a diode) with small reverse saturation current, a power diode or rectifier is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode and having a concentration of hydrogen of 5×1019 atoms/cm3 or less, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and third electrodes provided in contact with the gate insulating film and facing each other with the first electrode, the oxide semiconductor film, and the second electrode interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrodes are connected to the first electrode or the second electrode. With the non-linear element, a power diode or a rectifier is formed.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Publication number: 20140132643
    Abstract: An information processing device including a display unit and an input unit is driven by a first step of inputting an input signal from the input unit, a second step of starting to move an image displayed on the display unit, a third step of lowering luminance of the image, a fourth step of checking whether the image reaches a position of predetermined coordinates, a fifth step of increasing the luminance of the image in the case where the image reaches the position of the predetermined coordinates, and a sixth step of stopping moving the image so as to perform eye-friendly display with the display unit.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Yuji IWAKI, Jiro IMADA
  • Publication number: 20140132654
    Abstract: A technique capable of efficient, high speed processing for the formation of an organic compound layer by using an ink jet method is provided. In the method of forming an organic compound layer by using the ink jet method, a composition containing an organic compound having light emitting characteristics is discharged from an ink head, forming a continuous organic compound layer. The organic compound layer is formed on pixel electrodes aligned in a matrix shape, and is formed in a continuous manner over a plurality of pixel electrodes. A light emitting device is manufactured using organic light emitting elements in accordance with this manufacturing method.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 15, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Yasuyuki ARAI
  • Publication number: 20140131694
    Abstract: A FET is formed on a semiconductor substrate, a curved surface having a radius of curvature is formed on an upper end of an insulation, a portion of a first electrode is exposed corresponding to the curved surface to form an inclined surface, and a region defining a luminescent region is subjected to etching to expose the first electrode. Luminescence emitted from an organic chemical compound layer is reflected by the inclined surface of the first electrode to increase a total quantity of luminescence taken out in a certain direction.
    Type: Application
    Filed: January 3, 2014
    Publication date: May 15, 2014
    Applicant: Seminconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Seo, Hideaki Kuwabara
  • Publication number: 20140132908
    Abstract: A liquid crystal display device using a plastic substrate becomes required to have high resolution, high opening ratio, high reliability, or the like, with the increasing of a screen size. Besides, high productivity and cost reduction is also required. According to the present invention, a protective film 123 comprising at least one silicon nitride film, which is formed by a ratio frequency sputtering using a silicon target, is provided over an opposing substrate (a flexible substrate); sealant 112 is drawn; a liquid crystal material 114 is dropped over the opposing substrate in vacuo; and the opposing substrate is pasted to a flexible substrate 110 provided with a pixel electrode 111 and a columnar spacer 115.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Toru TAKAYAMA
  • Publication number: 20140131704
    Abstract: An object of an embodiment of the present invention is to manufacture a semiconductor device with high display quality and high reliability, which includes a pixel portion and a driver circuit portion capable of high-speed operation over one substrate, using transistors having favorable electric characteristics and high reliability as switching elements. Two kinds of transistors, in each of which an oxide semiconductor layer including a crystalline region on one surface side is used as an active layer, are formed in a driver circuit portion and a pixel portion. Electric characteristics of the transistors can be selected by choosing the position of the gate electrode layer which determines the position of the channel. Thus, a semiconductor device including a driver circuit portion capable of high-speed operation and a pixel portion over one substrate can be manufactured.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Hiroyuki MIYAKE