Patents by Inventor Shyam S. Bayya

Shyam S. Bayya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220227675
    Abstract: The present invention provides a method for making a high strength, small grain size ceramic having a transgranular fracture mode by rapid densification of a green body and subsequent cooling of the densified ceramic. The ceramic may include dislocations, defects, dopants, and/or secondary phases that are formed as a result of the process and resulting in stress fields capable of redirecting or arresting cracks within the material. This ceramic can maintain transparency from ultraviolet to mid-wave infrared.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Michael Hunt, Guillermo R. Villalobos, Benjamin Rock, Shyam S. Bayya, Woohong Kim, Ishwar D. Aggarwal, Bryan Sadowski, Jasbinder S. Sanghera
  • Patent number: 11299428
    Abstract: The present invention provides a method for making a high strength, small grain size ceramic having a trans-granular fracture mode by rapid densification of a green body and subsequent cooling of the densified ceramic. The ceramic may include dislocations, defects, dopants, and/or secondary phases that are formed as a result of the process and resulting in stress fields capable of redirecting or arresting cracks within the material. This ceramic can maintain transparency from ultraviolet to mid-wave infrared.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 12, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Michael Hunt, Guillermo R. Villalobos, Benjamin Rock, Shyam S. Bayya, Woohong Kim, Ishwar D. Aggarwal, Bryan Sadowski, Jasbinder S. Sanghera
  • Publication number: 20210246066
    Abstract: The present invention provides for synthesizing high optical quality multicomponent chalcogenide glasses without refractive index perturbations due to striae, phase separation or crystal formation using a two-zone furnace and multiple fining steps. The top and bottom zones are initially heated to the same temperature, and then a temperature gradient is created between the top zone and the bottom zone. The fining and cooling phase is divided into multiple steps with multiple temperature holds.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 12, 2021
    Inventors: Vinh Q. Nguyen, Mikhail Kotov, Daniel J. Gibson, Shyam S. Bayya, Jasbinder S. Sanghera, Gryphon A. Drake
  • Publication number: 20210230040
    Abstract: A high optical quality multicomponent chalcogenide glasses without refractive index perturbations due to striae, phase separation or crystal formation made using a sealed ampoule with chemical components enclosed inside, a two-zone furnace, a convection heating/mixing step, and multiple fining steps. Initially, the sealed ampoule is oriented vertically within the two-zone furnace and heated to melt the chemical components contained within, and a temperature gradient is created between the top zone and the bottom zone such that the bottom zone has a higher temperature. This temperature gradient causes convection currents within the viscous liquid until it is sufficiently mixed due to the convective flow. Then the temperature gradient is reversed such that the top zone now has a higher temperature and the convective flow ceases. The furnace temperatures are then reduced over a period of time, with holds at multiple temperatures for fining and cooling to form a solid glass.
    Type: Application
    Filed: April 12, 2021
    Publication date: July 29, 2021
    Inventors: Vinh Q. Nguyen, Jasbinder S. Sanghera, Daniel J. Gibson, Mikhail Kotov, Gryphon A. Drake, Shyam S. Bayya
  • Patent number: 10988407
    Abstract: The present invention provides for synthesizing high optical quality multicomponent chalcogenide glasses without refractive index perturbations due to striae, phase separation or crystal formation using a two-zone furnace and multiple fining steps. The top and bottom zones are initially heated to the same temperature, and then a temperature gradient is created between the top zone and the bottom zone. The fining and cooling phase is divided into multiple steps with multiple temperature holds.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Vinh Q. Nguyen, Mikhail Kotov, Daniel J. Gibson, Shyam S. Bayya, Jasbinder S. Sanghera, Gryphon A. Drake
  • Publication number: 20210109256
    Abstract: A method for producing nanostructured, hydrophilic, transmissive, anti-reflective surfaces is described. The method for providing a hydrophilic surface includes steps of providing a substrate that is transmissive in at least one wavelength in the infrared to ultraviolet range of the electromagnetic spectrum and comprises at least one surface including nanostructures of a size smaller than the at least one wavelength; and functionalizing the at least one surface with hydroxyl groups thereon. This method provides devices having excellent transmittance and anti-reflectance properties and which are resistant to seawater.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Darryl A. Boyd, Jesse A. Frantz, Shyam S. Bayya, Lynda E. Busse, Jasbinder S. Sanghera, Woohong Kim, Ishwar D. Aggarwal
  • Patent number: 10974984
    Abstract: A method for making high optical quality multicomponent chalcogenide glasses without refractive index perturbations due to striae, phase separation or crystal formation using a sealed ampoule with chemical components enclosed inside, a two-zone furnace, a convection heating/mixing step, and multiple fining steps. Initially, the sealed ampoule is oriented vertically within the two-zone furnace and heated to melt the chemical components contained within, and a temperature gradient is created between the top zone and the bottom zone such that the bottom zone has a higher temperature. This temperature gradient causes convection currents within the viscous liquid until it is sufficiently mixed due to the convective flow. Then the temperature gradient is reversed such that the top zone now has a higher temperature and the convective flow ceases. The furnace temperatures are then reduced over a period of time, with holds at multiple temperatures for fining and cooling to form a solid glass.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: April 13, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Vinh Q. Nguyen, Jasbinder S. Sanghera, Daniel J. Gibson, Mikhail Kotov, Gryphon A. Drake, Shyam S. Bayya
  • Patent number: 10822262
    Abstract: An optical fiber with multiple openings made from the steps comprising fabricating an extrusion die using at least one additive manufacturing technique such that the extrusion die has a first set of plurality of channels that combine inside the die into a second set of plurality of channels with a different set of shapes and sizes, extruding a glass through the extrusion die, forming a fiber optic preform having a plurality of longitudinal openings that run the entire length of the fiber optic preform, attaching a barrier layer to the fiber optic preform to form a series of channels to which pressure can be applied by a gas, wherein each channel has a pressure that is independently controlled, and stretching the fiber optic preform at an elevated temperature into an optical fiber with multiple openings.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: November 3, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Rafael R. Gattass, Daniel L. Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200317557
    Abstract: This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 ?m and 15 ?m, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10?5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 8, 2020
    Inventors: Daniel J. Gibson, Daniel Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Rafael R. Gattass, Jesse A. Frantz, Jason D. Myers, Woohong Kim, Jasbinder S. Sanghera
  • Patent number: 10677567
    Abstract: A transparent composite armor is made of tens to hundreds or even thousands of thin layers of material each with a thickness of 10-500 ?m. An appropriate amount of impedance mismatch between the layers causes some reflection at each interface but limit the amplitude of the resulting tensile wave below the tensile strength of the constituent materials. The result is an improvement in ballistic performance and that will result is a significant impact in reducing size, weight, and volume of the armor.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: June 9, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Guillermo R. Villalobos, Shyam S. Bayya, Woohong Kim, Bryan Sadowski, Michael Hunt, Robert E. Miklos, Colin C. Baker, Jasbinder S. Sanghera, Alex E. Moser
  • Publication number: 20190389776
    Abstract: Disclosed is a method of flash sintering a sample composed of ceramic particles by providing laser energy to change the electrical properties of the ceramic material. The processes and systems disclosed herein do not require large heating equipment like a furnace allowing for a portable system of repairing ceramic materials in the field.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 26, 2019
    Inventors: Guillermo R. Villalobos, Rafael R. Gattass, Michael Hunt, Shyam S. Bayya, Bryan Sadowski, Robert Miklos, Frederic H. Kung, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera, Antti Makinen
  • Publication number: 20190382298
    Abstract: An optical fiber with multiple openings made from the steps comprising fabricating an extrusion die using at least one additive manufacturing technique such that the extrusion die has a first set of plurality of channels that combine inside the die into a second set of plurality of channels with a different set of shapes and sizes, extruding a glass through the extrusion die, forming a fiber optic preform having a plurality of longitudinal openings that run the entire length of the fiber optic preform, attaching a barrier layer to the fiber optic preform to form a series of channels to which pressure can be applied by a gas, wherein each channel has a pressure that is independently controlled, and stretching the fiber optic preform at an elevated temperature into an optical fiber with multiple openings.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 19, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Rafael R. Gattass, Daniel L. Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10486977
    Abstract: A method of purifying a spinel powder includes contacting a spinel powder with an acid solution to form an acid-washed spinel composition and contacting the acid-washed spinel composition with a basic solution to form a purified composition. The purified powder is suited to formation of low-absorption shaped bodies, such as windows for high intensity laser devices.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: November 26, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Woohong Kim, Guillermo R. Villalobos, Colin C. Baker, Shyam S. Bayya, Michael Hunt, Bryan Sadowski, Ishwar D. Aggarwal, Jasbinder S. Sanghera
  • Patent number: 10389082
    Abstract: The invention relates to rare-earth-doped ternary sulfides. The rare-earth-doped ternary sulfides may be used as an active material for mid-wave infrared and long-wave infrared lasers and amplifiers. Methods for producing laser materials including rare-earth-doped ternary sulfides, as well as lasers and amplifiers incorporating the laser materials, are also provided.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: August 20, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: L. Brandon Shaw, Michael P. Hunt, Woohong Kim, Shyam S. Bayya, Steven R. Bowman, Frederic H. Kung, Jasbinder S. Sanghera, Christopher G. Brown
  • Patent number: 10370280
    Abstract: A method of making an optical fiber with multiple openings comprising the steps of fabricating an extrusion die using additive manufacturing such that the extrusion die has a plurality of channels that combine inside the die into another set of channels, extruding a glass, forming a fiber optic preform having a plurality of longitudinal openings that run the entire length, attaching a barrier layer for pressure application, and stretching the preform into an optical fiber with multiple openings. An extrusion die comprising an additive manufactured material, having a proximal side having openings and having a distal side having openings, wherein the openings of the proximal side are of feed channels, wherein the openings of the distal side are of forming channels, and wherein in side the body of the die, two of the feed channels combine the forming channels.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 6, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Rafael R. Gattass, Daniel L. Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10359574
    Abstract: Systems and methods are provided for mechanically encapsulating an infrared transmitting optical fiber, removing any power coupled to the cladding of the infrared optical fiber, and bridging the thermal properties between the optical fiber and the mechanical ferrule used. Embodiments of the present disclosure have several advantages over prior systems. For example, in an embodiment, the transmitting ferrule does not require epoxy to mount the fiber to the ferrule, isolates the front face of the fiber, and allows for high power to be incident on the connector without damage by reducing the thermal induced stress and managing any stray light coupled to the core.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: July 23, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Shyam S. Bayya, Daniel L. Rhonehouse
  • Publication number: 20190194052
    Abstract: A method for making high optical quality multicomponent chalcogenide glasses without refractive index perturbations due to striae, phase separation or crystal formation using a sealed ampoule with chemical components enclosed inside, a two-zone furnace, a convection heating/mixing step, and multiple fining steps. Initially, the sealed ampoule is oriented vertically within the two-zone furnace and heated to melt the chemical components contained within, and a temperature gradient is created between the top zone and the bottom zone such that the bottom zone has a higher temperature. This temperature gradient causes convection currents within the viscous liquid until it is sufficiently mixed due to the convective flow. Then the temperature gradient is reversed such that the top zone now has a higher temperature and the convective flow ceases. The furnace temperatures are then reduced over a period of time, with holds at multiple temperatures for fining and cooling to form a solid glass.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 27, 2019
    Inventors: Vinh Q. Nguyen, Jasbinder S. Sanghera, Daniel J. Gibson, Mikhail Kotov, Gryphon A. Drake, Shyam S. Bayya
  • Publication number: 20190077698
    Abstract: The present invention provides for synthesizing high optical quality multicomponent chalcogenide glasses without refractive index perturbations due to striae, phase separation or crystal formation using a two-zone furnace and multiple fining steps. The top and bottom zones are initially heated to the same temperature, and then a temperature gradient is created between the top zone and the bottom zone. The fining and cooling phase is divided into multiple steps with multiple temperature holds.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 14, 2019
    Inventors: Vinh Q. Nguyen, Mikhail Kotov, Daniel J. Gibson, Shyam S. Bayya, Jasbinder S. Sanghera, Gryphon A. Drake
  • Publication number: 20180356599
    Abstract: Systems and methods are provided for mechanically encapsulating an infrared transmitting optical fiber, removing any power coupled to the cladding of the infrared optical fiber, and bridging the thermal properties between the optical fiber and the mechanical ferrule used. Embodiments of the present disclosure have several advantages over prior systems. For example, in an embodiment, the transmitting ferrule does not require epoxy to mount the fiber to the ferrule, isolates the front face of the fiber, and allows for high power to be incident on the connector without damage by reducing the thermal induced stress and managing any stray light coupled to the core.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 13, 2018
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Shyam S. Bayya, Daniel L. Rhonehouse
  • Patent number: 10133039
    Abstract: A method for making a gradient index infrared transmitting optic by thermally treating a preform, where the preform comprises two or more infrared transmitting glasses having different compositions and optical properties, where there is an interface between adjacent glasses, where during the thermal treatment one or more chemical elements from the glasses diffuses through one or more interface resulting in a diffused gradient index optical element comprising a gradient in the chemical element concentration, and where the optical element has a gradient in refractive index and dispersion. Also disclosed is the related infrared transmitting optical element made by this method.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 20, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Daniel J. Gibson, Mikhail Kotov, Geoff Chin, Shyam S. Bayya, Jasbinder S. Sanghera, Vinh Q. Nguyen