Patents by Inventor Shyuan Yang

Shyuan Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250148969
    Abstract: An electronic device comprises a display and a controller. The controller is configured to provide a first frequency refresh rate to the display. The controller is also configured to generate a control signal configured to control emission of a light emitting diode of a display pixel of the display at a second frequency based on whether the first frequency refresh rate of the display is less than a predetermined threshold value.
    Type: Application
    Filed: January 10, 2025
    Publication date: May 8, 2025
    Inventors: Chin-Wei Lin, Hung Sheng Lin, Vasudha Gupta, Shinya Ono, Tsung-Ting Tsai, Shyuan Yang
  • Patent number: 12288522
    Abstract: An electronic device includes a display and a sensor underneath the display. The display has a full pixel density region and a reduced pixel density region. Compared to pixels in the full pixel density region, pixels in the reduced pixel density region can be controlled using overdriven power supply voltages, overdriven scan control signals, different initialization and reset voltages, and can include capacitors and transistors with different physical and electrical characteristics. Gate drivers provide scan signals to pixels in the full pixel density region, whereas overdrive buffers provide overdrive scan signals to pixels in the reduced pixel density region. The pixels in the full pixel density region and the pixels in the reduced pixel density region can be controlled using different black level or gamma settings for each color channel and can be adjusted physically to match luminance, color, as well as to mitigate differences in temperature and aging impact.
    Type: Grant
    Filed: July 11, 2023
    Date of Patent: April 29, 2025
    Assignee: Apple Inc.
    Inventors: Shyuan Yang, Salman Kabir, Ricardo A Peterson, Warren S Rieutort-Louis, Ting-Kuo Chang, Qing Li, Yuchi Che, Tsung-Ting Tsai, Feng Wen, Abbas Jamshidi Roudbari, Kyounghwan Kim, Graeme M Williams, Kingsuk Brahma, Yue Jack Chu, Junbo Wu, Chieh-Wei Chen, Bo-Ren Wang, Injae Hwang, Wenbing Hu
  • Patent number: 12205531
    Abstract: An electronic device comprises a display and a controller. The controller is configured to provide a first frequency refresh rate to the display. The controller is also configured to generate a control signal configured to control emission of a light emitting diode of a display pixel of the display at a second frequency based on whether the first frequency refresh rate of the display is less than a predetermined threshold value.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: January 21, 2025
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Hung Sheng Lin, Vasudha Gupta, Shinya Ono, Tsung-Ting Tsai, Shyuan Yang
  • Patent number: 12207512
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Grant
    Filed: November 17, 2023
    Date of Patent: January 21, 2025
    Assignee: Apple Inc.
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Publication number: 20250008799
    Abstract: A display may include an active area with a first region and a second region. The first region may overlap an input-output component such as a camera and may have a higher transparency than the second region. The first region may have a lower pixel density than the second region. Signal lines that pass through the first region may have transparent portions that overlap the first region and opaque portions that overlap the second region. To mitigate artifacts caused by high resistance of the transparent portions of the signal lines, the signal lines may include supplemental opaque portions that are electrically connected in parallel to the transparent portions and that are routed through the second region around the first region.
    Type: Application
    Filed: May 17, 2024
    Publication date: January 2, 2025
    Inventors: Shyuan Yang, Abbas Jamshidi Roudbari, Gihoon Choo, Jae Won Choi, Jean-Pierre S. Guillou, Jonglo Park, Kyounghwan Kim, Ricardo A. Peterson, Sungki Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Yi Qiao, Yuchi Che, Yue Cui, Yue Jack Chu, Zhizhen Ma
  • Patent number: 12185616
    Abstract: An electronic device may include a display and an optical sensor formed underneath the display. The display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap the optical sensor. To mitigate reflectance mismatch between the full pixel density region and the pixel removal region, the pixel removal region may include a transition region at one or more edges. In the transition region, one or more components may have a gradual density change between the full pixel density region and a central portion of the pixel removal region. Components that may have a changing density in the transition region include dummy thin-film transistor sub-pixels, dummy anodes, a cathode layer, and a touch sensor metal layer. The transition region may also include anodes that gradually change shape and/or size.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: December 31, 2024
    Assignee: Apple Inc.
    Inventors: Ricardo A Peterson, Yuchi Che, Warren S Rieutort-Louis, Abbas Jamshidi Roudbari, Yi Qiao, Yue Cui, Jean-Pierre S Guillou, Shyuan Yang, Tsung-Ting Tsai
  • Patent number: 12175907
    Abstract: A light emitter that operates through a display may cause display artifacts, even when the light emitter operates using non-visible wavelengths. To mitigate artifacts caused by a light emitter operating through a display, the display may have a higher density of thin-film transistor sub-pixels than emissive sub-pixels. This allows for a region in the display to include emissive sub-pixels but be free of thin-film transistor sub-pixels. The light emitter may operate through this region in the display. Additionally, to reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels.
    Type: Grant
    Filed: September 28, 2023
    Date of Patent: December 24, 2024
    Assignee: Apple Inc.
    Inventors: Shyuan Yang, Cheng-Chih Hsieh, Jonathan H Beck, Yuchi Che, Tsung-Ting Tsai, Warren S Rieutort-Louis, Abbas Jamshidi Roudbari, Ting-Kuo Chang, Shih Chang Chang, Bhadrinarayana Lalgudi Visweswaran, Jae Won Choi, Kyounghwan Kim
  • Publication number: 20240381724
    Abstract: A display may have a stretchable portion with hermetically sealed rigid pixel islands. A flexible interconnect region may be interposed between the hermetically sealed rigid pixel islands. The hermetically sealed rigid pixel islands may include organic light-emitting diode (OLED) pixels. A conductive cutting structure may have an undercut that causes a discontinuity in a conductive OLED layer to mitigate lateral leakage. The conductive cutting structure may also be electrically connected to a cathode for the OLED pixels and provide a cathode voltage to the cathode. First and second inorganic passivation layers may be formed over the OLED pixels. Multiple discrete portions of an organic inkjet printed layer may be interposed between the first and second inorganic passivation layers.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Prashant Mandlik, Bhadrinarayana Lalgudi Visweswaran, Xuesong Lu, Weixin Li, Wenbing Hu, Yuchi Che, Tsung-Ting Tsai, Gihoon Choo, Shyuan Yang, Kuan-Yi Lee, An-Di Sheu, Chi-Wei Chou, Chin-Fu Lee, An-Hong Shen, Ko-Wei Chen, Kyounghwan Kim, Jae Won Choi, Warren S. Rieutort-Louis, Sungki Lee
  • Publication number: 20240332319
    Abstract: An electronic device may include a substrate, an array of display pixels formed on the substrate, first conductive contacts on the substrate, second conductive contacts on the substrate, a flexible printed circuit that is attached to the first conductive contacts, a display driver integrated circuit that is attached to the second conductive contacts, and conductive traces that electrically connect the first conductive contacts to the second conductive contacts. A dielectric layer may cover at least the sidewalls of the conductive traces to protect the conductive traces from damage by an etchant. Subsequently, some or all of the dielectric layer may be removed to prevent damage caused by moisture ingress into the cladding layer.
    Type: Application
    Filed: March 21, 2024
    Publication date: October 3, 2024
    Inventors: Gihoon Choo, Abbas Jamshidi Roudbari, Guanxiong Liu, Jae Won Choi, Kyounghwan Kim, Shyuan Yang, Sungki Lee, Ting-Kuo Chang, Tsung-Ting Tsai, Wan-Ching Hsu, Warren S Rieutort-Louis, Yishan Liu, Zhe Hua
  • Publication number: 20240210995
    Abstract: A display may have a stretchable portion with hermetically sealed rigid pixel islands. A flexible interconnect region may be interposed between the hermetically sealed rigid pixel islands. The hermetically sealed rigid pixel islands may include organic light-emitting diode (OLED) pixels. A conductive cutting structure may have an undercut that causes a discontinuity in a conductive OLED layer to mitigate lateral leakage. The conductive cutting structure may also be electrically connected to a cathode for the OLED pixels and provide a cathode voltage to the cathode. First and second inorganic passivation layers may be formed over the OLED pixels. Multiple discrete portions of an organic inkjet printed layer may be interposed between the first and second inorganic passivation layers.
    Type: Application
    Filed: October 10, 2023
    Publication date: June 27, 2024
    Inventors: Prashant Mandlik, Bhadrinarayana Lalgudi Visweswaran, Mahendra Chhabra, Chia-Hao Chang, Shiyi Liu, Siddharth Harikrishna Mohan, Zhen Zhang, Han-Chieh Chang, Yi Qiao, Yue Cui, Tyler R Kakuda, Michael Vosgueritchian, Sudirukkuge T. Jinasundera, Warren S Rieutort-Louis, Tsung-Ting Tsai, Jae Won Choi, Jiun-Jye Chang, Jean-Pierre S Guillou, Rui Liu, Po-Chun Yeh, Chieh Hung Yang, Ankit Mahajan, Takahide Ishii, Pei-Ling Lin, Pei Yin, Gwanwoo Park, Markus Einzinger, Martijn Kuik, Abhijeet S Bagal, Kyounghwan Kim, Jonathan H Beck, Chiang-Jen Hsiao, Chih-Hao Kung, Chih-Lei Chen, Chih-Yu Chung, Chuan-Jung Lin, Jung Yen Huang, Kuan-Chi Chen, Shinya Ono, Wei Jung Hsieh, Wei-Chieh Lin, Yi-Pu Chen, Yuan Ming Chiang, An-Di Sheu, Chi-Wei Chou, Chin-Fu Lee, Ko-Wei Chen, Kuan-Yi Lee, Weixin Li, Shin-Hung Yeh, Shyuan Yang, Themistoklis Afentakis, Asli Sirman, Baolin Tian, Han Liu
  • Publication number: 20240194106
    Abstract: A light emitter that operates through a display may cause display artifacts, even when the light emitter operates using non-visible wavelengths. To mitigate artifacts caused by a light emitter operating through a display, the display may have a higher density of thin-film transistor sub-pixels than emissive sub-pixels. This allows for a region in the display to include emissive sub-pixels but be free of thin-film transistor sub-pixels. The light emitter may operate through this region in the display. Additionally, to reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels.
    Type: Application
    Filed: September 28, 2023
    Publication date: June 13, 2024
    Inventors: Shyuan Yang, Cheng-Chih Hsieh, Jonathan H. Beck, Yuchi Che, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Abbas Jamshidi Roudbari, Ting-Kuo Chang, Shih Chang Chang, Bhadrinarayana Lalgudi Visweswaran, Jae Won Choi, Kyounghwan Kim
  • Publication number: 20240099086
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 21, 2024
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Publication number: 20240065057
    Abstract: A display may include pixels arranged in rows and columns in an active area and display driver circuitry in an inactive area. Data lines for the pixels may be positioned in the active area. Fanout lines may be routed through the active area. Each fanout line may electrically connect the display driver circuitry to a respective data line. One or more pixels may include a drive transistor and a light-emitting diode that are connected in series between a first power supply terminal and a second power supply terminal. A conductive layer may form a first terminal (such as the source terminal, the gate terminal, or the drain terminal) for the drive transistor. A conductive shielding layer may be interposed between the conductive layer and a fanout line to mitigate capacitive coupling between the terminal of the drive transistor and the fanout line.
    Type: Application
    Filed: June 2, 2023
    Publication date: February 22, 2024
    Inventors: Shin-Hung Yeh, Abbas Jamshidi Roudbari, Chien-Ya Lee, I-Cheng Shih, Shyuan Yang, Tsung-Ting Tsai
  • Patent number: 11895883
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 6, 2024
    Assignee: Apple Inc.
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Publication number: 20240038159
    Abstract: A display may have an array of organic light-emitting diode display pixels operating at a low refresh rate. Each display pixel may have six thin-film transistors and one capacitor. One of the six transistors may serve as the drive transistor and may be compensated using the remaining five transistors and the capacitor. One or more on-bias stress operations may be applied before threshold voltage sampling to mitigate first frame dimming. Multiple anode reset and on-bias stress operations may be inserted during vertical blanking periods to reduce flicker and maintain balance and may also be inserted between successive data refreshes to improve first frame performance. Two different emission signals controlling each pixel may be toggled together using a pulse width modulation scheme to help provide darker black levels.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 1, 2024
    Inventors: Chin-Wei Lin, Shyuan Yang, Chuang Qian, Abbas Jamshidi Roudbari, Ting-Kuo Chang
  • Patent number: 11854490
    Abstract: To reduce the amount of space occupied in the inactive area of a display by gate driver circuitry, at least a portion of the gate driver circuitry may be positioned in the active area of the display. To accommodate the gate driver circuitry, emissive sub-pixels may be laterally shifted relative to corresponding thin-film transistor sub-pixels. This allows for the thin-film transistor sub-pixels to be grouped adjacent to the central area of the active area, leaving room along an edge of the active area to accommodate one or more additional display components such as gate driver circuitry or fanout portions of data lines.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: December 26, 2023
    Assignee: Apple Inc.
    Inventors: Levent Erdal Aygun, Chin-Wei Lin, Yun Wang, Xin Lin, Aida R Colon-Berrios, Shih Chang Chang, Fan Gui, Mohammad Reza Esmaeili Rad, Ran Tu, Warren S Rieutort-Louis, Abbas Jamshidi Roudbari, Bhadrinarayana Lalgudi Visweswaran, Cheng-Chih Hsieh, Ricardo A Peterson, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Yuchi Che
  • Patent number: 11823621
    Abstract: A display may have an array of organic light-emitting diode display pixels operating at a low refresh rate. Each display pixel may have six thin-film transistors and one capacitor. One of the six transistors may serve as the drive transistor and may be compensated using the remaining five transistors and the capacitor. One or more on-bias stress operations may be applied before threshold voltage sampling to mitigate first frame dimming. Multiple anode reset and on-bias stress operations may be inserted during vertical blanking periods to reduce flicker and maintain balance and may also be inserted between successive data refreshes to improve first frame performance. Two different emission signals controlling each pixel may be toggled together using a pulse width modulation scheme to help provide darker black levels.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: November 21, 2023
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Shyuan Yang, Chuang Qian, Abbas Jamshidi Roudbari, Ting-Kuo Chang
  • Patent number: 11741904
    Abstract: A display may have rows and columns of pixels. Gate lines may be used to supply gate signals to rows of the pixels. Data lines may be used to supply data signals to columns of the pixels. The data lines may include alternating even and odd data lines. Data lines may be organized in pairs each of which includes one of the odd data lines and an adjacent one of the even data lines. Demultiplexer circuitry may be configured dynamically during data loading and pixel sensing operations. During data loading, data from display driver circuitry may be supplied, alternately to odd pairs of the data lines and even pairs of the data lines. During sensing, the demultiplexer circuitry may couple a pair of the even data lines to sensing circuitry in the display driver circuitry and then may couple a pair of the odd data lines to the sensing circuitry.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 29, 2023
    Assignee: Apple Inc.
    Inventors: Ting-Kuo Chang, Abbas Jamshidi Roudbari, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shinya Ono, Shin-Hung Yeh, Chien-Ya Lee, Shyuan Yang
  • Publication number: 20230260452
    Abstract: An electronic device comprises a display and a controller. The controller is configured to provide a first frequency refresh rate to the display. The controller is also configured to generate a control signal configured to control emission of a light emitting diode of a display pixel of the display at a second frequency based on whether the first frequency refresh rate of the display is less than a predetermined threshold value.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Chin-Wei Lin, Hung Sheng Lin, Vasudha Gupta, Shinya Ono, Tsung-Ting Tsai, Shyuan Yang
  • Patent number: 11670219
    Abstract: An electronic device comprises a display and a controller. The controller is configured to provide a first frequency refresh rate to the display. The controller is also configured to generate a control signal configured to control emission of a light emitting diode of a display pixel of the display at a second frequency based on whether the first frequency refresh rate of the display is less than a predetermined threshold value.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: June 6, 2023
    Assignee: Apple Inc.
    Inventors: Chin-Wei Lin, Hung Sheng Lin, Vasudha Gupta, Shinya Ono, Tsung-Ting Tsai, Shyuan Yang