Patents by Inventor Siavash Fallahi

Siavash Fallahi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072770
    Abstract: A device is provided that includes a counter circuit configured to count cycles of an input clock signal and to generate an output clock signal periodically based on a cycle count of the input clock signal; a multi-phase clock generator configured to generate a plurality of multi-phase clock signals from a system clock signal; a multiplexer circuit coupled to the multi-phase clock generator and configured to provide a multi-phase clock signal selected from the plurality of multi-phase clock signals to the counter circuit as the input clock signal; and a selection circuit configured to provide a selection signal to the multiplexer circuit periodically to switch the multi-phase clock signal provided to the counter circuit from a current multi-phase clock signal to a next multi-phase clock signal selected from the plurality of multi-phase clock signals.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Lakshmi RAO, Siavash Fallahi, Tim Yee He, Ali Nazemi, Jun Cao
  • Patent number: 10931288
    Abstract: Disclosed herein are embodiments of an apparatus and a method for generating a quadrature clock signal. In one aspect, the apparatus includes a first delay circuitry to delay a clock signal according to a first control signal to generate a first delayed clock signal. In one aspect, the apparatus includes a second delay circuitry to delay the clock signal according to a second control signal to generate a second delayed clock signal. In one aspect, the apparatus includes a delay controller forming a first feedback loop with the first delay circuitry, and forming a second feedback loop with the second delay circuitry, where the delay controller determines a difference between the first delayed clock signal and the second delayed clock signal and modifies the first control signal and the second control signal according to the determined difference.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: February 23, 2021
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Zhiyu Ru, Tim Yee He, Siavash Fallahi, Ali Nazemi, Delong Cui, Jun Cao
  • Publication number: 20200304129
    Abstract: Disclosed herein are embodiments of an apparatus and a method for generating a quadrature clock signal. In one aspect, the apparatus includes a first delay circuitry to delay a clock signal according to a first control signal to generate a first delayed clock signal. In one aspect, the apparatus includes a second delay circuitry to delay the clock signal according to a second control signal to generate a second delayed clock signal. In one aspect, the apparatus includes a delay controller forming a first feedback loop with the first delay circuitry, and forming a second feedback loop with the second delay circuitry, where the delay controller determines a difference between the first delayed clock signal and the second delayed clock signal and modifies the first control signal and the second control signal according to the determined difference.
    Type: Application
    Filed: December 26, 2019
    Publication date: September 24, 2020
    Inventors: Zhiyu RU, Tim Yee HE, Siavash FALLAHI, Ali NAZEMI, Delong CUI, Jun CAO
  • Patent number: 10523220
    Abstract: Disclosed herein are embodiments of an apparatus and a method for generating a quadrature clock signal. In one aspect, the apparatus includes a first delay circuitry to delay a clock signal according to a first control signal to generate a first delayed clock signal. In one aspect, the apparatus includes a second delay circuitry to delay the clock signal according to a second control signal to generate a second delayed clock signal. In one aspect, the apparatus includes a delay controller forming a first feedback loop with the first delay circuitry, and forming a second feedback loop with the second delay circuitry, where the delay controller determines a difference between the first delayed clock signal and the second delayed clock signal and modifies the first control signal and the second control signal according to the determined difference.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: December 31, 2019
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Zhiyu Ru, Tim Yee He, Siavash Fallahi, Ali Nazemi, Delong Cui, Jun Cao
  • Patent number: 9281828
    Abstract: Embodiments for reference-less voltage controlled oscillator (VCO) calibration are provided. Embodiments include a VCO calibration module which uses one or more signals from a frequency detector to automatically select a proper VCO band and bring the VCO clock frequency close enough to the data rate. The VCO calibration module uses a calibration code to calibrate the VCO. In embodiments, the calibration code is determined using a frequency search scheme, which includes a discovery phase to determine the proper VCO band, and a binary search phase and a monitoring phase to select the calibration code that brings the VCO clock frequency closest to the data rate.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 8, 2016
    Assignee: Broadcom Corporation
    Inventors: Mahyar Kargar, Siavash Fallahi, Namik Kocaman, Afshin Momtaz
  • Patent number: 9246670
    Abstract: A high-speed clock generator device includes a phase-interpolator (PI) circuit, a smoothing block, and inverter-based low-pass filters. The PI circuit receives a multiple clock signals with different phase angles and generates an output clock signal having a correct phase angle. The smoothing block smooths the clock signals with different phase angles and generates a number of smooth clock signals featuring improved linearity. The inverter-based low-pass filters filter harmonics of the clock signals with different phase angles.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 26, 2016
    Assignee: Broadcom Corporation
    Inventors: Mahmoud Reza Ahmadi, Siavash Fallahi, Tamer Ali, Ali Nazemi, Hassan Maarefi, Burak Catli, Afshin Momtaz
  • Publication number: 20150180649
    Abstract: A high-speed clock generator device includes a phase-interpolator (PI) circuit, a smoothing block, and inverter-based low-pass filters. The PI circuit receives a multiple clock signals with different phase angles and generates an output clock signal having a correct phase angle. The smoothing block smooths the clock signals with different phase angles and generates a number of smooth clock signals featuring improved linearity. The inverter-based low-pass filters filter harmonics of the clock signals with different phase angles.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Mahmoud Reza AHMADI, Siavash FALLAHI, Tamer ALI, Ali NAZEMI, Hassan MAAREFI, Burak CATLI, Afshin MOMTAZ
  • Patent number: 9001869
    Abstract: A device for high-speed clock generation may include an injection locking-ring oscillator (ILRO) configured to receive one or more input clock signals and to generate multiple clock signals with different equally spaced phase angles. A phase-interpolator (PI) circuit may be configured to receive the multiple coarse spaced clock signals and to generate an output clock signal having a correct phase angle. The PI circuit may include a smoothing block that may be configured to smooth the multiple clock signals with different phase angles and to generate multiple smooth clock signals. A pulling block may be configured to pull edges of the multiple smooth clock signals closer to one another.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Broadcom Corporation
    Inventors: Mahmoud Reza Ahmadi, Siavash Fallahi, Tamer Ali, Ali Nazemi, Hassan Maarefi, Burak Catli, Afshin Momtaz
  • Patent number: 8977869
    Abstract: While an IC chip is in idle mode with no power being supplied to the IC chip, the IC chip may be operable to detect a signal pulse received by the IC chip using energy associated with the signal pulse. The IC chip may be operable to control a control signal for a power switch using the energy associated with the signal pulse. The power switch may allow power to be provided to the IC chip based on the control signal. The IC chip may comprise a pulse detector, a latch circuit and an ON/OFF logic circuit within the IC chip. While the IC chip is fully powered and communication with a partner chip is finished, the IC chip may be operable to control the control signal to turn off the power switch for powering down the IC chip based on a turn-off signal.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 10, 2015
    Assignee: Broadcom Corporation
    Inventors: Jingguang Wang, Derek Tam, Mark Berman, Siavash Fallahi
  • Patent number: 8947167
    Abstract: Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 3, 2015
    Assignee: Broadcom Corporation
    Inventors: Mahyar Kargar, Siavash Fallahi, Namik Kocaman, Mehdi Khanpour, Afshin Momtaz
  • Publication number: 20140241442
    Abstract: A device for high-speed clock generation may include an injection locking-ring oscillator (ILRO) configured to receive one or more input clock signals and to generate multiple clock signals with different equally spaced phase angles. A phase-interpolator (PI) circuit may be configured to receive the multiple coarse spaced clock signals and to generate an output clock signal having a correct phase angle. The PI circuit may include a smoothing block that may be configured to smooth the multiple clock signals with different phase angles and to generate multiple smooth clock signals. A pulling block may be configured to pull edges of the multiple smooth clock signals closer to one another.
    Type: Application
    Filed: July 19, 2013
    Publication date: August 28, 2014
    Inventors: Mahmoud Reza Ahmadi, Siavash Fallahi, Tamer Ali, Ali Nazemi, Hassan Maarefi, Burak Catli, Afshin Momtaz
  • Publication number: 20140126614
    Abstract: A communication system is described that includes a transmitter to transmit data using one or more drivers. The drivers may drive the data in a manner that accords with pre-emphasis being selectively enabled or disabled for each driver. The pre-emphasis, when enabled, is applied by corresponding driver. The drivers may also be programmably selected and enabled or disabled. The transmitter also includes one or more driver selection circuits. The driver selection circuits may be configured to select one or more of the drivers to transmit the data, to selectively enable or disable pre-emphasis to be applied by each of the selected drivers, and to provide the data, or representations thereof, to the selected drivers.
    Type: Application
    Filed: December 19, 2012
    Publication date: May 8, 2014
    Applicant: BROADCOM CORPORATION
    Inventors: Hassan Maarefi, Siavash Fallahi
  • Patent number: 8643218
    Abstract: A method and apparatus that minimizes saturation caused by power transfer in a communication system transformer, such as a transformer found in a Power-over-Ethernet system. A magnetic flux imbalance causing saturation in the transformer is detected. A compensation current is injected into a winding to minimize the magnetic flux imbalance and saturation.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: February 4, 2014
    Assignee: Broadcom Corporation
    Inventors: Siavash Fallahi, Kevin Brown
  • Publication number: 20130285752
    Abstract: Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 31, 2013
    Inventors: Mahyar KARGAR, Siavash Fallahi, Namik Kocaman, Mehdi Khanpour, Afshin Momtaz
  • Patent number: 8502609
    Abstract: Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: August 6, 2013
    Assignee: Broadcom Corporation
    Inventors: Mahyar Kargar, Siavash Fallahi, Namik Kocaman, Mehdi Khanpour, Afshin Momtaz
  • Patent number: 8401175
    Abstract: An internet protocol telephone includes a substrate having an input and an output that are capable of being connected to the internet protocol (IP) network. A relay is disposed on the substrate and is connected between the input and the output of the substrate. The relay includes first and second native FETs that have a threshold voltage of approximately zero volts. Therefore, the relay is nominally turned-on, even when little or no voltage (or power) is applied to the IP telephone substrate, as during the discovery mode of IP telephone operation. During discovery mode, The IP phone is configured to be responsive to extended link pulses and block data packets that are associated with legacy devices. Data packets have a higher signal duration and are more continuous than extended link pulses. The IP phone includes a switchable ground that is connected to the gates of the native devices, and is controlled by a rectifier and filter circuit that are connected to the substrate input.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: March 19, 2013
    Assignee: Broadcom Corporation
    Inventors: Siavash Fallahi, Kevin Brown
  • Publication number: 20120313715
    Abstract: Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: Broadcom Corporation
    Inventors: Mahyar Kargar, Siavash Fallahi, Namik Kocaman, Mehdi Khanpour, Afshin Momtaz
  • Publication number: 20120313714
    Abstract: Embodiments for reference-less voltage controlled oscillator (VCO) calibration are provided. Embodiments include a VCO calibration module which uses one or more signals from a frequency detector to automatically select a proper VCO band and bring the VCO clock frequency close enough to the data rate. The VCO calibration module uses a calibration code to calibrate the VCO. In embodiments, the calibration code is determined using a frequency search scheme, which includes a discovery phase to determine the proper VCO band, and a binary search phase and a monitoring phase to select the calibration code that brings the VCO clock frequency closest to the data rate.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 13, 2012
    Applicant: Broadcom Corporation
    Inventors: Mahyar Kargar, Siavash Fallahi, Namik Kocaman, Afshin Momtaz
  • Patent number: 8280035
    Abstract: An Internet Protocol (IP) telephone has a constant impedance filter that is capable of being continuously attached to the physical layer of a computer chip in the IP telephone. The constant impedance filter is located outside the physical layer and is connected to a relay on the physical layer. The relay is configured using native FET devices, which are normally conductive without a supply voltage. Therefore, the relay is capable of operating during the discovery mode of IP telephone operation, where no power is applied to the substrate. Rectifier circuits rectify an incoming signal during discovery mode, and apply the rectified signal to the gate of the relay to improve conductivity of the relay. This allows for faster detection of the IP telephone during discovery mode. During normal operation mode, voltage is applied to the physical layer, and the relay is opened by grounding the native devices.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 2, 2012
    Assignee: Broadcom Corporation
    Inventors: Siavash Fallahi, Lin Able Chu
  • Publication number: 20120223765
    Abstract: While an IC chip is in idle mode with no power being supplied to the IC chip, the IC chip may be operable to detect a signal pulse received by the IC chip using energy associated with the signal pulse. The IC chip may be operable to control a control signal for a power switch using the energy associated with the signal pulse. The power switch may allow power to be provided to the IC chip based on the control signal. The IC chip may comprise a pulse detector, a latch circuit and an ON/OFF logic circuit within the IC chip. While the IC chip is fully powered and communication with a partner chip is finished, the IC chip may be operable to control the control signal to turn off the power switch for powering down the IC chip based on a turn-off signal.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 6, 2012
    Inventors: Jingguang Wang, Derek Tam, Mark Berman, Siavash Fallahi