Patents by Inventor Siddharth Harikrishna Mohan
Siddharth Harikrishna Mohan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240268144Abstract: A novel thin film encapsulated OLED panel architecture and a method for making the panels with improved shelf life is disclosed. The OLED panel consists of a plurality of OLED pixels; each OLED pixel is individually hermetically sealed and isolated from its neighboring pixels. The organic stack of the OLED pixel is contained within its own hermetically sealed structure, achieved by making the structure on a barrier coated substrate and using a first barrier material as the grid and a second barrier for encapsulating the entire OLED pixel. The first barrier material provides the edge seal while the second barrier disposed over the pixel provides protection from top down moisture diffusion. By isolating and hermetically sealing individual pixels; any damage such as moisture and oxygen ingress due to defects or particles, delamination, cracking etc. can be effectively contained within the pixel thereby protecting other pixels in the panel.Type: ApplicationFiled: April 19, 2024Publication date: August 8, 2024Inventors: Siddharth HARIKRISHNA MOHAN, William E. QUINN, Ruiqing MA, Emory KRALL, Luke WALSKI
-
Publication number: 20240254356Abstract: A print material includes a vinylic molecule, a vinylic cross-linker molecule having a plurality of vinyl groups, a quantum dot, a light-scattering particle having a surface composition, and a dispersant having a chemical affinity matched to the surface composition. Methods of making and using such print materials are also described.Type: ApplicationFiled: February 26, 2024Publication date: August 1, 2024Applicant: Kateeva, Inc.Inventors: Elena Rogojina, Inna Gurevitch, Teresa A. Ramos, Siddharth Harikrishna-Mohan, Robert Richard Roth, Noa Cohen, Elena Sheina
-
Publication number: 20240247375Abstract: Systems and techniques for depositing organic material on a substrate are provided, in which one or more shield gas flows prevents contamination of the substrate by the chamber ambient. Thus, multiple layers of the same or different materials may be deposited in a single deposition chamber, without the need for movement between different deposition chambers, and with reduced chance of cross-contamination between layers.Type: ApplicationFiled: April 3, 2024Publication date: July 25, 2024Inventors: Gregory MCGRAW, William E. QUINN, Gregg KOTTAS, Siddharth HARIKRISHNA MOHAN, Matthew KING
-
Publication number: 20240210995Abstract: A display may have a stretchable portion with hermetically sealed rigid pixel islands. A flexible interconnect region may be interposed between the hermetically sealed rigid pixel islands. The hermetically sealed rigid pixel islands may include organic light-emitting diode (OLED) pixels. A conductive cutting structure may have an undercut that causes a discontinuity in a conductive OLED layer to mitigate lateral leakage. The conductive cutting structure may also be electrically connected to a cathode for the OLED pixels and provide a cathode voltage to the cathode. First and second inorganic passivation layers may be formed over the OLED pixels. Multiple discrete portions of an organic inkjet printed layer may be interposed between the first and second inorganic passivation layers.Type: ApplicationFiled: October 10, 2023Publication date: June 27, 2024Inventors: Prashant Mandlik, Bhadrinarayana Lalgudi Visweswaran, Mahendra Chhabra, Chia-Hao Chang, Shiyi Liu, Siddharth Harikrishna Mohan, Zhen Zhang, Han-Chieh Chang, Yi Qiao, Yue Cui, Tyler R Kakuda, Michael Vosgueritchian, Sudirukkuge T. Jinasundera, Warren S Rieutort-Louis, Tsung-Ting Tsai, Jae Won Choi, Jiun-Jye Chang, Jean-Pierre S Guillou, Rui Liu, Po-Chun Yeh, Chieh Hung Yang, Ankit Mahajan, Takahide Ishii, Pei-Ling Lin, Pei Yin, Gwanwoo Park, Markus Einzinger, Martijn Kuik, Abhijeet S Bagal, Kyounghwan Kim, Jonathan H Beck, Chiang-Jen Hsiao, Chih-Hao Kung, Chih-Lei Chen, Chih-Yu Chung, Chuan-Jung Lin, Jung Yen Huang, Kuan-Chi Chen, Shinya Ono, Wei Jung Hsieh, Wei-Chieh Lin, Yi-Pu Chen, Yuan Ming Chiang, An-Di Sheu, Chi-Wei Chou, Chin-Fu Lee, Ko-Wei Chen, Kuan-Yi Lee, Weixin Li, Shin-Hung Yeh, Shyuan Yang, Themistoklis Afentakis, Asli Sirman, Baolin Tian, Han Liu
-
Publication number: 20240192548Abstract: Liquid ink compositions containing quantum dots for optoelectronic display applications are provided. Also provided are solid films formed by drying the ink compositions, optical elements incorporating the solid films, display devices incorporating the optical elements, and methods of forming the solid films, optical elements, and the devices. Liquid ink compositions and solid films made by drying the liquid ink compositions include one or more blue light-absorbing materials in combination with red light-emitting QDs or green light-emitting QDs.Type: ApplicationFiled: January 11, 2024Publication date: June 13, 2024Applicant: Kateeva, Inc.Inventors: Conor F. Madigan, Siddharth Harikrishna-Mohan, Florian Pschenitzka, Teresa A. Ramos, Inna Gurevitch
-
Patent number: 11997866Abstract: A novel thin film encapsulated OLED panel architecture and a method for making the panels with improved shelf life is disclosed. The OLED panel consists of a plurality of OLED pixels; each OLED pixel is individually hermetically sealed and isolated from its neighboring pixels. The organic stack of the OLED pixel is contained within its own hermetically sealed structure, achieved by making the structure on a barrier coated substrate and using a first barrier material as the grid and a second barrier for encapsulating the entire OLED pixel. The first barrier material provides the edge seal while the second barrier disposed over the pixel provides protection from top down moisture diffusion. By isolating and hermetically sealing individual pixels; any damage such as moisture and oxygen ingress due to defects or particles, delamination, cracking etc. can be effectively contained within the pixel thereby protecting other pixels in the panel.Type: GrantFiled: December 29, 2020Date of Patent: May 28, 2024Assignee: Universal Display CorporationInventors: Siddharth Harikrishna Mohan, William E. Quinn, Ruiqing Ma, Emory Krall, Luke Walski
-
Patent number: 11976360Abstract: Systems and techniques for depositing organic material on a substrate are provided, in which one or more shield gas flows prevents contamination of the substrate by the chamber ambient. Thus, multiple layers of the same or different materials may be deposited in a single deposition chamber, without the need for movement between different deposition chambers, and with reduced chance of cross-contamination between layers.Type: GrantFiled: January 20, 2023Date of Patent: May 7, 2024Assignee: Universal Display CorporationInventors: Gregory McGraw, William E. Quinn, Gregg Kottas, Siddharth Harikrishna Mohan, Matthew King
-
Patent number: 11945961Abstract: A print material includes a vinylic molecule, a vinylic cross-linker molecule having a plurality of vinyl groups, a quantum dot, a light-scattering particle having a surface composition, and a dispersant having a chemical affinity matched to the surface composition. Methods of making and using such print materials are also described.Type: GrantFiled: June 27, 2022Date of Patent: April 2, 2024Assignee: Kateeva, Inc.Inventors: Elena Rogojina, Inna Gurevitch, Teresa A. Ramos, Siddharth Harikrishna-Mohan, Robert Richard Roth, Noa Cohen, Elena Sheina
-
Patent number: 11906849Abstract: Liquid ink compositions containing quantum dots for optoelectronic display applications are provided. Also provided are solid films formed by drying the ink compositions, optical elements incorporating the solid films, display devices incorporating the optical elements, and methods of forming the solid films, optical elements, and the devices. Liquid ink compositions and solid films made by drying the liquid ink compositions include one or more blue light-absorbing materials in combination with red light-emitting QDs or green light-emitting QDs.Type: GrantFiled: September 30, 2021Date of Patent: February 20, 2024Assignee: Kateeva, Inc.Inventors: Conor F. Madigan, Siddharth Harikrishna-Mohan, Florian Pschenitzka, Teresa A. Ramos, Inna Gurevitch
-
Publication number: 20240023382Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, a cutting structure may disrupt continuity of the OLED layers. The cutting structure may have two undercuts to disrupt continuity of at least some of the OLED layers. The cutting structure may include a conductive portion that provides a cathode voltage to a cathode layer for the OLED pixels.Type: ApplicationFiled: September 28, 2023Publication date: January 18, 2024Inventors: Siddharth Harikrishna Mohan, Gwanwoo Park, Ping Kuen Daniel Tsang, Pei Yin, Weixin Li, Li-An Liu, Alexandru Riposan, Teruo Sasagawa, Steven J Brewer, Younggu Lee, Mitsuhiro Kashiwabara, Rui Liu, Hung-Yi Tsai, Tien-Pei Chou, Yi Wen Wang, Mahendra Chhabra, Chieh Hung Yang, Bhadrinarayana Lalgudi Visweswaran, David K. Schoenwald
-
Patent number: 11761076Abstract: A microfluidic device for use with a microfluidic delivery system, such as an organic vapor jet printing device, includes a glass layer that is directly bonded to a microfabricated die and a metal plate via a double anodic bond. The double anodic bond is formed by forming a first anodic bond at an interface of the microfabricated die and the glass layer, and forming a second anodic bond at an interface of the metal plate and the glass layer, where the second anodic bond is formed using a voltage that is lower than the voltage used to form the first anodic bond. The second anodic bond is formed with the polarity of the voltage reversed with respect to the glass layer and the formation of the first anodic bond. The metal plate includes attachment features that allow removal of the microfluidic device from a fixture.Type: GrantFiled: May 3, 2021Date of Patent: September 19, 2023Assignee: The Regents of the University of MichiganInventors: Stephen Forrest, Gregory McGraw, Siddharth Harikrishna Mohan, Diane L. Peters
-
Patent number: 11751426Abstract: A hybrid permeation barrier having two complementary layers is disclosed. The barrier includes a first layer with a relatively high stress-thickness in the range of ?1000 MPa-?m to ?200 MPa-?m and a second layer with a relatively low stress-thickness in the range ?150 MPa-?m to 300 MPa-?m. The second layer compensates for the stress caused by the first, thereby allowing for a barrier that provides good permeation without causing failure of the device due to delamination.Type: GrantFiled: October 18, 2017Date of Patent: September 5, 2023Assignee: Universal Display CorporationInventors: Siddharth Harikrishna Mohan, William E. Quinn, Arpit Patel, James Robert Kantor
-
Patent number: 11751468Abstract: Methods and devices for controlling pressures in microenvironments between a deposition apparatus and a substrate are provided. Each microenvironment is associated with an aperture of the deposition apparatus which can allow for control of the microenvironment.Type: GrantFiled: July 20, 2021Date of Patent: September 5, 2023Assignee: Universal Display CorporationInventors: William E. Quinn, Siddharth Harikrishna Mohan, Gregory McGraw, Xin Xu
-
Publication number: 20230183852Abstract: Embodiments of the disclosed subject matter provide methods and systems including a nozzle, a source of material to be deposited on a substrate in fluid communication with the nozzle, a delivery gas source in fluid communication with the source of material to be deposited with the nozzle, an exhaust channel disposed adjacent to the nozzle, a confinement gas source in fluid communication with the nozzle and the exhaust channel, and disposed adjacent to the exhaust channel, and an actuator to adjust a fly height separation between a deposition nozzle aperture of the nozzle and a deposition target. The adjustment of the fly height separation may stop and/or start the deposition of the material from the nozzle.Type: ApplicationFiled: December 15, 2022Publication date: June 15, 2023Inventors: Gregory McGRAW, William E. QUINN, Matthew KING, Elliot H. HARTFORD, JR., Siddharth HARIKRISHNA MOHAN, Benjamin SWEDLOVE, Gregg KOTTAS
-
Publication number: 20230151491Abstract: Systems and techniques for depositing organic material on a substrate are provided, in which one or more shield gas flows prevents contamination of the substrate by the chamber ambient. Thus, multiple layers of the same or different materials may be deposited in a single deposition chamber, without the need for movement between different deposition chambers, and with reduced chance of cross-contamination between layers.Type: ApplicationFiled: January 20, 2023Publication date: May 18, 2023Inventors: Gregory MCGRAW, William E. QUINN, Gregg KOTTAS, Siddharth HARIKRISHNA MOHAN, Matthew KING
-
Patent number: 11591686Abstract: Methods of modulating flow during vapor jet deposition of organic materials are provided. A method may include ejecting a vapor entrained in a delivery gas from a nozzle onto a substrate upon which the vapor condenses. A confinement gas may be provided that has a flow direction opposing a flow direction of the delivery gas ejected from the nozzle. A vacuum source may be provided that is adjacent to a delivery gas aperture of the nozzle. The method may include adjusting, by an actuator, a fly height separation between a deposition nozzle aperture of the nozzle and a deposition target.Type: GrantFiled: October 28, 2020Date of Patent: February 28, 2023Assignee: Universal Display CorporationInventors: Gregory McGraw, William E. Quinn, Matthew King, Elliot H. Hartford, Jr., Siddharth Harikrishna Mohan, Benjamin Swedlove, Gregg Kottas
-
Patent number: 11584991Abstract: Systems and techniques for depositing organic material on a substrate are provided, in which one or more shield gas flows prevents contamination of the substrate by the chamber ambient. Thus, multiple layers of the same or different materials may be deposited in a single deposition chamber, without the need for movement between different deposition chambers, and with reduced chance of cross-contamination between layers.Type: GrantFiled: June 3, 2020Date of Patent: February 21, 2023Assignee: Universal Display CorporationInventors: Gregory McGraw, William E. Quinn, Gregg Kottas, Siddharth Harikrishna Mohan, Matthew King
-
Publication number: 20220332966Abstract: A print material includes a vinylic molecule, a vinylic cross-linker molecule having a plurality of vinyl groups, a quantum dot, a light-scattering particle having a surface composition, and a dispersant having a chemical affinity matched to the surface composition. Methods of making and using such print materials are also described.Type: ApplicationFiled: June 27, 2022Publication date: October 20, 2022Applicant: Kateeva, Inc.Inventors: Elena Rogojina, Inna Gurevitch, Teresa A. Ramos, Siddharth Harikrishna-Mohan, Robert Richard Roth, Noa Cohen, Elena Sheina
-
Publication number: 20220271254Abstract: An electronic device may have a display such as an organic light-emitting diode (OLED) display. The OLED display may have an array of OLED pixels that each have OLED layers interposed between a cathode and an anode. The pixels may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The distance between the partially transparent cathode layer and the reflective anode structure for a pixel may be selected such that light at the wavelength emitted by the pixel forms a standing wave between the anode and the cathode. The standing wave may have only one anti-node and the emissive layer for the pixel may be aligned with that one anti-node. To mitigate short circuits, a roughness reduction layer and/or short-circuit-reducing layer having a high sheet resistance may be formed between the anode the OLED layers.Type: ApplicationFiled: January 5, 2022Publication date: August 25, 2022Inventors: Niva A. Ran, Michelle C. Sherrott, Steven J. Brewer, Ping Kuen Daniel Tsang, KiBeom Kim, Hui Lu, Siddharth Harikrishna Mohan
-
Patent number: 11407914Abstract: A print material includes a vinylic molecule, a vinylic cross-linker molecule having a plurality of vinyl groups, a quantum dot, a light-scattering particle having a surface composition, and a dispersant having a chemical affinity matched to the surface composition. Methods of making and using such print materials are also described.Type: GrantFiled: December 4, 2019Date of Patent: August 9, 2022Assignee: Kateeva, Inc.Inventors: Elena Rogojina, Inna Gurevitch, Teresa A. Ramos, Siddharth Harikrishna-Mohan, Robert Richard Roth, Noa Cohen, Elena Sheina