Patents by Inventor Siegfried Fleischer

Siegfried Fleischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10079640
    Abstract: An optical communication system includes a free space optical transceiver within a housing to transmit and receive optical communication signals along an optical pathway through a window in the housing. Heating elements applied to the interior surface of the window substantially uniformly heat the window such that the window is kept free from condensation and ice without introducing significant distortions in the wavefront. Accordingly, the heating elements are designed and placed on the window such that the obscuration caused by the presence of the heating elements within the optical pathway and the wavefront distortion caused by temperature gradients within the cross-section of the window in the optical pathway cause less than 1 decibel (dB) in transmission loss as compared to the same system without the heating elements on the window.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 18, 2018
    Assignee: Collinear Networks, Inc.
    Inventors: Paolo Zambon, Siegfried Fleischer
  • Publication number: 20180210151
    Abstract: A free space variable optical attenuator (VOA) utilizes a beamsplitter to create tap beams (of both the input signal and the beam-steered output signal) that are directed into monitoring photodiodes. The beamsplitter is configured to exhibit a non-equal splitting ratio such that the tap beams are only a relatively small portion of the input/output beams. The free space configuration eliminates the need for fiber-based couplers, splices and connections to external monitors, as required in prior art VOA monitoring systems. The VOA utilizes a voltage-controlled, MEMS-based tilt mirror to provide beam steering of the propagating, free space beam in a known manner to introduce attenuation (power reduction) in the output signal.
    Type: Application
    Filed: January 23, 2017
    Publication date: July 26, 2018
    Applicant: II-VI Incorporated
    Inventors: Mark H. Garrett, Mark Filipowicz, Siegfried Fleischer
  • Patent number: 9544052
    Abstract: A low cost, high reliability system for correcting aberrations in optical signals is disclosed. A foreoptic assembly, such as a telescope, receives an incoming optical signal and directs it to an active optical element, such as a fast steering mirror. The incoming optical signal is diffracted by a diffractive optical element to shape the image that is formed at a wavefront sensor, such as a quad-cell. The wavefront sensor measures a tip-tilt aberration of the incoming optical signal and the active optical element is adjusted to correct the measured aberration. An outgoing optical signal can be transmitted along substantially the same optical path as the incoming optical signal, but in the opposite direction. Thus, the aberration measured from the incoming optical signal can be automatically accounted for in the outgoing optical signal.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 10, 2017
    Assignee: AOptix Technologies, Inc.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Siegfried Fleischer, Paolo Zambon, Jeffrey Tuttle, Yu Chun Chang
  • Patent number: 9450670
    Abstract: A free-space optical transceiver includes a repositionable mirror for receiving and sending light beams with another transceiver. To properly align the light beams, the position of the mirror is determined in using a position sensor. The position sensor is mounted within a base substructure that is coupled to a steerable mirror substructure containing the mirror. The position sensor reflects sensor light off of the mirror to determine the position of the mirror along two different axes. The position sensor includes an optical element for shaping the sensor light. The components of the position sensor are mounted to the base substructure such that alignment of the position sensor is not required. Further, by coupling the position sensor to the base substructure and not the steerable mirror substructure, the moment of inertia and center of gravity of the steerable mirror substructure is improved, thereby improving the steering responsiveness of the mirror.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 20, 2016
    Assignee: Aoptix Technologies, Inc.
    Inventors: Siegfried Fleischer, Glenn Scott Gibb, Jr., Yu Chun Chang, Howard Dando
  • Patent number: 9166684
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: October 20, 2015
    Assignee: Aoptix Technologies, Inc.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm J. Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Publication number: 20150098707
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm J. Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Patent number: 8942562
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 27, 2015
    Assignee: A Optix Technologies, Inc.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Publication number: 20140248048
    Abstract: A low cost, high reliability system for correcting aberrations in optical signals is disclosed. A foreoptic assembly, such as a telescope, receives an incoming optical signal and directs it to an active optical element, such as a fast steering mirror. The incoming optical signal is diffracted by a diffractive optical element to shape the image that is formed at a wavefront sensor, such as a quad-cell. The wavefront sensor measures a tip-tilt aberration of the incoming optical signal and the active optical element is adjusted to correct the measured aberration. An outgoing optical signal can be transmitted along substantially the same optical path as the incoming optical signal, but in the opposite direction. Thus, the aberration measured from the incoming optical signal can be automatically accounted for in the outgoing optical signal.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 4, 2014
    Inventors: Malcolm J. Northcott, J. Elon Graves, Siegfried Fleischer, Paolo Zambon, Jeffrey Tuttle, Rebecca Chang
  • Publication number: 20120308235
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: AOPTIX TECHNOLOGIES, INC.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Patent number: 8132912
    Abstract: A rapid iris acquisition, tracking, and imaging system can be used at longer standoff distances and over larger capture volumes, without the active cooperation of subjects. Eye reflections from the subjects' eyes are used to steer a high resolution camera to the eyes in order to capture images of the irises. A circular deformable minor driven by one or more annular forces can be used to focus the camera. A circular mirror substrate is mounted by its circumference onto a minor mount and driven by an annular drive element that contacts the minor substrate along a ring. If the annular drive element has a certain diameter relative to the circumference of the mirror substrate, the mirror substrate will be deformed in the shape of a sphere.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 13, 2012
    Assignee: AOptix Technologies, Inc.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Dan Potter, Siegfried Fleischer
  • Patent number: 7008120
    Abstract: An apparatus and packaging scheme that ensures that alignments between signal sending and detecting components in transceivers are optimized and maintained over the lifetime of the apparatus. This is accomplished through use of a pair of polymer optical modules, which are used to couple light sent to and received from respective fiber optic cables. During a pre-alignment process, head portions of the polymer optical modules are inserted into respective slots defined in a standoff that is mounted on an optical sub-assembly to which an emitter and detector are mounted, whereby these slots are configured so that the head portions slide along the sidewalls of the slots during assembly. During a subsequent active alignment process, each polymer optical module is positioned relative to its respective emitter or detector until a maximum signal is detected, whereupon the position of the components is quick-set using a UV-sensitive adhesive.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: March 7, 2006
    Assignee: Intel Corporation
    Inventors: Brett Zaborsky, Rao Peddada, Andrew Alduino, Douglas Crafts, Siegfried Fleischer
  • Patent number: 6903325
    Abstract: According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: June 7, 2005
    Assignee: Intel Corporation
    Inventors: Siegfried Fleischer, Dean Samara-Rubio
  • Publication number: 20050117853
    Abstract: An apparatus including a base having a first opening of a dimension suitable to pass a light emission therethrough, a first side wall coupled to the base and having a second opening of a dimension suitable to pass a light emission therethrough, a second side wall coupled to the base and having a reflective component thereon, and the base, the first side wall, and the second side wall define an interior chamber with the reflective component disposed in the interior chamber; and a fiber connector extending from an exterior of the first side wall adjacent the second opening. A method including powering a laser disposed in a substrate coupling a fiber optic cable to an optical subassembly; and aligning the optical assembly over the transceiver board to capture the emitted light from the laser in the fiber optic cable.
    Type: Application
    Filed: December 28, 2000
    Publication date: June 2, 2005
    Inventors: Venkatesan Murali, Douglas Crafts, Suresh Ramalingam, Brett Zaborsky, Siegfried Fleischer
  • Patent number: 6795461
    Abstract: An optoelectric module includes a cylindrical ferrule defining an optical axis and having a first end constructed to receive an optical fiber aligned along the optical axis. A TO-can is positioned within the ferrule and has a first end with an optical element therein for conducting light therethrough. A base is affixed to the second end of the TO-can and to the second end of the ferrule. A laser is mounted within the TO-can so that light generated by the laser is directed through the optical element along the optical axis. A laser driver is mounted on the base and electrically connected to the laser. External connections to the laser driver are completed by either electrical traces on a surface of the base, vias through the base, or flexible leads mounted on the base.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: September 21, 2004
    Inventors: Thomas H. Blair, Phillip J. Edwards, Siegfried Fleischer, Michael S. Lebby, Bradley S. Levin, Oliver W. Northup, Michael M. O'Toole, Joseph John Vandenberg, Brett M. Zaborsky
  • Publication number: 20040065809
    Abstract: According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present.
    Type: Application
    Filed: September 25, 2003
    Publication date: April 8, 2004
    Inventors: Siegfried Fleischer, Dean Samara-Rubio
  • Publication number: 20040033031
    Abstract: An apparatus and packaging scheme that ensures that alignments between signal sending and detecting components in transceivers are optimized and maintained over the lifetime of the apparatus. This is accomplished through use of a pair of polymer optical modules, which are used to couple light sent to and received from respective fiber optic cables. During a pre-alignment process, head portions of the polymer optical modules are inserted into respective slots defined in a standoff that is mounted on an optical sub-assembly to which an emitter and detector are mounted, whereby these slots are configured so that the head portions slide along the sidewalls of the slots during assembly. During a subsequent active alignment process, each polymer optical module is positioned relative to its respective emitter or detector until a maximum signal is detected, whereupon the position of the components is quick-set using a UV-sensitive adhesive. Additional adhesive may then be added to further secure the components.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 19, 2004
    Inventors: Brett Zaborsky, Rao Peddada, Andrew Alduino, Douglas Crafts, Siegfried Fleischer
  • Patent number: 6692161
    Abstract: An apparatus and packaging scheme that ensures that alignments between signal sending and detecting components in transceivers are optimized and maintained over the lifetime of the apparatus. This is accomplished through use of a pair of polymer optical modules, which are used to couple light sent to and received from respective fiber optic cables. During a pre-alignment process, head portions of the polymer optical modules are inserted into respective slots defined in a standoff that is mounted on an optical sub-assembly to which an emitter and detector are mounted, whereby these slots are configured so that the head portions slide along the sidewalls of the slots during assembly. During a subsequent active alignment process, each polymer optical module is positioned relative to its respective emitter or detector until a maximum signal is detected, whereupon the position of the components is quick-set using a UV-sensitive adhesive. Additional adhesive may then be added to further secure the components.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: February 17, 2004
    Assignee: Intel Corporation
    Inventors: Brett Zaborsky, Rao Peddada, Andrew Alduino, Douglas Crafts, Siegfried Fleischer
  • Patent number: 6663296
    Abstract: An optoelectric module includes a cylindrical ferrule defining an optical axis and having a first end constructed to receive an optical fiber aligned along the optical axis. An optical element, including a lens, is engaged in the ferrule between the first and second ends and positioned to convey light along the optical axis. The second end of the ferrule is closed by a base. An optical component is mounted on the base so that light is directed through the lens from the optical component to the optical fiber or from the optical fiber to the optical component. Either a laser driver or an amplifier is mounted on the base and electrically connected to the optical component and external connections are made to the laser driver or the amplifier by electrical traces on a surface of the base, vias through the base, or flex leads mounted on the base.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 16, 2003
    Inventors: Thomas H. Blair, Phillip J. Edwards, Siegfried Fleischer, Michael S. Lebby, Bradley S. Levin, Oliver W Northrup, Michael M. O'Toole, Joseph John Vandenberg
  • Patent number: 6661951
    Abstract: Optical alignment apparatus includes a first element mounting a first lens and a light source and a second element mounting a second lens and a light receiving structure. The first lens is placed a first distance from the light source and is constructed to collimate light received from the light source. The first and second elements are mounted relative to each other to position the second lens a third distance from the first lens and to receive the collimated light from the first lens. The second lens is positioned a second distance from the light receiving structure to focus the collimated light on the light receiving structure. The first and second lens are constructed so that the first and second distances are dependent upon each other and the third distance is independent of the first and second distances.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: December 9, 2003
    Inventors: Thomas H. Blair, Diana Ching Chen, Phillip J. Edwards, Siegfried Fleischer, Bradley S. Levin, Oliver W. Northrup, Michael M. O'Toole, Joseph John Vandenberg, Brett Matthew Zaborsky
  • Patent number: 6649898
    Abstract: According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: November 18, 2003
    Assignee: Intel Corporation
    Inventors: Siegfried Fleischer, Dean Samara-Rubio