Patents by Inventor Siegfried Fleischer

Siegfried Fleischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6795461
    Abstract: An optoelectric module includes a cylindrical ferrule defining an optical axis and having a first end constructed to receive an optical fiber aligned along the optical axis. A TO-can is positioned within the ferrule and has a first end with an optical element therein for conducting light therethrough. A base is affixed to the second end of the TO-can and to the second end of the ferrule. A laser is mounted within the TO-can so that light generated by the laser is directed through the optical element along the optical axis. A laser driver is mounted on the base and electrically connected to the laser. External connections to the laser driver are completed by either electrical traces on a surface of the base, vias through the base, or flexible leads mounted on the base.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: September 21, 2004
    Inventors: Thomas H. Blair, Phillip J. Edwards, Siegfried Fleischer, Michael S. Lebby, Bradley S. Levin, Oliver W. Northup, Michael M. O'Toole, Joseph John Vandenberg, Brett M. Zaborsky
  • Publication number: 20040065809
    Abstract: According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present.
    Type: Application
    Filed: September 25, 2003
    Publication date: April 8, 2004
    Inventors: Siegfried Fleischer, Dean Samara-Rubio
  • Publication number: 20040033031
    Abstract: An apparatus and packaging scheme that ensures that alignments between signal sending and detecting components in transceivers are optimized and maintained over the lifetime of the apparatus. This is accomplished through use of a pair of polymer optical modules, which are used to couple light sent to and received from respective fiber optic cables. During a pre-alignment process, head portions of the polymer optical modules are inserted into respective slots defined in a standoff that is mounted on an optical sub-assembly to which an emitter and detector are mounted, whereby these slots are configured so that the head portions slide along the sidewalls of the slots during assembly. During a subsequent active alignment process, each polymer optical module is positioned relative to its respective emitter or detector until a maximum signal is detected, whereupon the position of the components is quick-set using a UV-sensitive adhesive. Additional adhesive may then be added to further secure the components.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 19, 2004
    Inventors: Brett Zaborsky, Rao Peddada, Andrew Alduino, Douglas Crafts, Siegfried Fleischer
  • Patent number: 6692161
    Abstract: An apparatus and packaging scheme that ensures that alignments between signal sending and detecting components in transceivers are optimized and maintained over the lifetime of the apparatus. This is accomplished through use of a pair of polymer optical modules, which are used to couple light sent to and received from respective fiber optic cables. During a pre-alignment process, head portions of the polymer optical modules are inserted into respective slots defined in a standoff that is mounted on an optical sub-assembly to which an emitter and detector are mounted, whereby these slots are configured so that the head portions slide along the sidewalls of the slots during assembly. During a subsequent active alignment process, each polymer optical module is positioned relative to its respective emitter or detector until a maximum signal is detected, whereupon the position of the components is quick-set using a UV-sensitive adhesive. Additional adhesive may then be added to further secure the components.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: February 17, 2004
    Assignee: Intel Corporation
    Inventors: Brett Zaborsky, Rao Peddada, Andrew Alduino, Douglas Crafts, Siegfried Fleischer
  • Patent number: 6663296
    Abstract: An optoelectric module includes a cylindrical ferrule defining an optical axis and having a first end constructed to receive an optical fiber aligned along the optical axis. An optical element, including a lens, is engaged in the ferrule between the first and second ends and positioned to convey light along the optical axis. The second end of the ferrule is closed by a base. An optical component is mounted on the base so that light is directed through the lens from the optical component to the optical fiber or from the optical fiber to the optical component. Either a laser driver or an amplifier is mounted on the base and electrically connected to the optical component and external connections are made to the laser driver or the amplifier by electrical traces on a surface of the base, vias through the base, or flex leads mounted on the base.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 16, 2003
    Inventors: Thomas H. Blair, Phillip J. Edwards, Siegfried Fleischer, Michael S. Lebby, Bradley S. Levin, Oliver W Northrup, Michael M. O'Toole, Joseph John Vandenberg
  • Patent number: 6661951
    Abstract: Optical alignment apparatus includes a first element mounting a first lens and a light source and a second element mounting a second lens and a light receiving structure. The first lens is placed a first distance from the light source and is constructed to collimate light received from the light source. The first and second elements are mounted relative to each other to position the second lens a third distance from the first lens and to receive the collimated light from the first lens. The second lens is positioned a second distance from the light receiving structure to focus the collimated light on the light receiving structure. The first and second lens are constructed so that the first and second distances are dependent upon each other and the third distance is independent of the first and second distances.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: December 9, 2003
    Inventors: Thomas H. Blair, Diana Ching Chen, Phillip J. Edwards, Siegfried Fleischer, Bradley S. Levin, Oliver W. Northrup, Michael M. O'Toole, Joseph John Vandenberg, Brett Matthew Zaborsky
  • Patent number: 6649898
    Abstract: According to the invention, systems, apparatus and methods are disclosed for optically enabling a circuit component in a large scale integrated circuit. In one embodiment, the invention is a circuit comprising a light sensing device for producing a signal in response to sensing light, an optic function subcircuit, and a switch connected to the light sensing device and to the optic function subcircuit for activating the optic function subcircuit when light is sensed. The light sensing device is preferably a phototransistor and a light sensing circuit is preferably placed between the light sensing device and the switch for amplifying and conditioning the light sensing signal. The optic function subcircuit can be an optical modulator, an optical receiver or any other device that is to be operated and powered only when incident light is present.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: November 18, 2003
    Assignee: Intel Corporation
    Inventors: Siegfried Fleischer, Dean Samara-Rubio
  • Patent number: 6636056
    Abstract: A method and apparatus for testing the operability of a signal source formed on a die are described. A pair of modulators are formed on the die and coupled to the signal source. An optical unit is optically coupled to the pair of modulators, which are capable of modulating an optical beam in response to a signal provided by the signal source. The optical unit is capable of detecting modulation of the optical beam. To test the signal source, the signal source is set to generate a signal. If modulation of the optical beam is detected at the optical unit, then the signal source is operable. If modulation of the optical beam is not detected at the optical unit, then the signal source is not operable.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: October 21, 2003
    Assignee: Intel Corporation
    Inventor: Siegfried Fleischer
  • Patent number: 6519099
    Abstract: The optoelectric alignment apparatus and lens system includes a glass ball positioned to receive light from a light source along an optical axis. A second lens is positioned to receive light from the glass ball and to supply the received light to a light receiving structure. The glass ball provides most of the optical power of the lens system so that the second lens provides only minor optical correction. The lens system is mounted by means of a molded plastic body that extends axially along the optical axis with the second lens molded into the body. The body includes a light inlet end and a light outlet in a surface lateral to the optical axis and defines a glass ball receiving cavity adjacent the light inlet end fixedly gripping the glass ball.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: February 11, 2003
    Inventors: Thomas H. Blair, Diana Ching Chen, Phillip J. Edwards, Siegfried Fleischer, Bradley S. Levin, Oliver W. Northrup, Michael M. O'Toole, Joseph John Vandenberg, Brett Matthew Zaborsky
  • Publication number: 20020150354
    Abstract: An apparatus and packaging scheme that ensures that alignments between signal sending and detecting components in transceivers are optimized and maintained over the lifetime of the apparatus. This is accomplished through use of a pair of polymer optical modules, which are used to couple light sent to and received from respective fiber optic cables. During a pre-alignment process, head portions of the polymer optical modules are inserted into respective slots defined in a standoff that is mounted on an optical sub-assembly to which an emitter and detector are mounted, whereby these slots are configured so that the head portions slide along the sidewalls of the slots during assembly. During a subsequent active alignment process, each polymer optical module is positioned relative to its respective emitter or detector until a maximum signal is detected, whereupon the position of the components is quick-set using a UV-sensitive adhesive. Additional adhesive may then be added to further secure the components.
    Type: Application
    Filed: March 29, 2001
    Publication date: October 17, 2002
    Inventors: Brett Zaborsky, Rao Peddada, Andrew Alduino, Douglas Crafts, Siegfried Fleischer