Patents by Inventor Silvia Borsari

Silvia Borsari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240071495
    Abstract: Memory circuitry comprising strings of memory cells comprises a stack comprising vertically-alternating insulative tiers and conductive tiers. Channel-material strings of memory cells extend through the insulative tiers and the conductive tiers in a memory-array region. The insulative tiers and the conductive tiers extend from the memory-array region into a stair-step region. The stair-step region comprises a cavity comprising a flight of stairs having insulative material atop treads of the stairs. Individual of the treads comprise conducting material of one of the conductive tiers. Conductive vias extend through the insulative material. Individual of the conductive vias are directly above and directly against the conducting material of the respective individual tread. A lining is over sidewalls of the individual conductive vias. The lining has a bottom. The individual conductive vias are directly under the bottom of the lining directly above the conducting material of the respective individual tread.
    Type: Application
    Filed: August 26, 2022
    Publication date: February 29, 2024
    Applicant: Micron Technology, Inc.
    Inventors: Jiewei Chen, Jordan D. Greenlee, Shuangqiang Luo, Silvia Borsari
  • Publication number: 20240038588
    Abstract: A method of forming a microelectronic device comprises forming interlayer dielectric material over a base structure comprising semiconductive structures separated from one another by insulative structures. Sacrificial line structures separated from one another by trenches are formed over the interlayer dielectric material. The sacrificial line structures horizontally overlap some of the semiconductive structures, and the trenches horizontally overlap some other of the semiconductive structures. Plug structures are formed within horizontal areas of the trenches and extend through the interlayer dielectric material and into the some other of the semiconductive structures. The sacrificial line structures are replaced with additional trenches. Conductive contact structures are formed within horizontal areas of the additional trenches and extend through the interlayer dielectric material and into the some of the semiconductive structures.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Terrence B. McDaniel, Vinay Nair, Russell A. Benson, Christopher W. Petz, Si-Woo Lee, Silvia Borsari, Ping Chieh Chiang, Luca Fumagalli
  • Patent number: 11729964
    Abstract: An apparatus comprises a conductive structure, another conductive structure, and a laminate spacer structure interposed between the conductive structure and the another conductive structure in a first direction. The laminate spacer structure comprises a dielectric spacer structure, another dielectric spacer structure, and an additional dielectric spacer structure interposed between the dielectric spacer structure and the another dielectric spacer structure. The additional dielectric spacer structure comprises at least one dielectric material, and gas pockets dispersed within the at least one dielectric material. Additional apparatuses, memory devices, electronic systems, and a method of forming an apparatus are also described.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: August 15, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Silvia Borsari, Stian E. Wood, Haoyu Li, Yiping Wang
  • Patent number: 11641742
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: May 2, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Cole Smith, Ramey M. Abdelrahaman, Silvia Borsari, Chris M. Carlson, David Daycock, Matthew J. King, Jin Lu
  • Patent number: 11637175
    Abstract: A vertical transistor comprises a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region. The top source/drain region and the channel region have a top interface and the bottom source/drain region and the channel region have a bottom interface. The channel region is crystalline and has an average crystal grain size of its crystal grains that is less than 20 nanometers. The channel region at the top interface or at the bottom interface has greater horizontal texture than volume of the crystal grains in the channel region that is vertically between the crystal grains that are at the top and bottom interfaces. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: April 25, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yi Fang Lee, Hung-Wei Liu, Ning Lu, Anish A. Khandekar, Jeffery B. Hull, Silvia Borsari
  • Publication number: 20230028297
    Abstract: A method of forming a semiconductor device comprising forming a silicon carbide material on a patterned material. The silicon carbide material is subjected to a plasma to expose horizontal portions of the silicon carbide material to the plasma. The horizontal portions of the silicon carbide material are selectively removed, and the patterned material is removed to form a pattern of the silicon carbide material.
    Type: Application
    Filed: July 18, 2022
    Publication date: January 26, 2023
    Inventors: Vivek Yadav, Silvia Borsari, Song Guo
  • Patent number: 11563011
    Abstract: A method used in forming integrated circuitry comprises forming conductive material over a substrate. The conductive material is patterned into a conductive line that is horizontally longitudinally elongated. The conductive material is vertically recessed in longitudinally-spaced first regions of the conductive line to form longitudinally-spaced conductive pillars that individually are in individual longitudinally-spaced second regions that longitudinally-alternate with the longitudinally-spaced first regions along the conductive line. The conductive pillars project vertically relative to the conductive material in the longitudinally-spaced and vertically-recessed first regions of the conductive line. Electronic components are formed directly above the conductive pillars. Individual of the electronic components are directly electrically coupled to individual of the conductive pillars. Additional methods, including structure independent of method, are disclosed.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Vinay Nair, Silvia Borsari, Ryan L. Meyer, Russell A. Benson, Yi Fang Lee
  • Patent number: 11563008
    Abstract: Some embodiments include an integrated assembly having digit-line-contact-regions between pairs of capacitor-contact-regions. The capacitor-contact-regions are arranged with six adjacent capacitor-contact-regions in a substantially rectangular configuration. Conductive plugs are coupled with the capacitor-contact-regions. Conductive redistribution material is coupled with the conductive plugs. Upper surfaces of the conductive redistribution material are arranged in a substantially hexagonal-close-packed configuration. Digit lines are over the digit-line-contact-regions. Insulative regions are between the digit lines and the conductive plugs. The insulative regions contain voids and/or low-k dielectric material. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: January 24, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Guangjun Yang, Vinay Nair, Devesh Dadhich Shreeram, Ashwin Panday, Kangle Li, Zhiqiang Xie, Silvia Borsari, Mohd Kamran Akhtar, Si-Woo Lee
  • Patent number: 11508734
    Abstract: Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Amirhasan Nourbakhsh, John K. Zahurak, Sanh D. Tang, Silvia Borsari, Hong Li
  • Publication number: 20220285357
    Abstract: Some embodiments include an integrated assembly having digit-line-contact-regions between pairs of capacitor-contact-regions. The capacitor-contact-regions are arranged with six adjacent capacitor-contact-regions in a substantially rectangular configuration. Conductive plugs are coupled with the capacitor-contact-regions. Conductive redistribution material is coupled with the conductive plugs. Upper surfaces of the conductive redistribution material are arranged in a substantially hexagonal-close-packed configuration. Digit lines are over the digit-line-contact-regions. Insulative regions are between the digit lines and the conductive plugs. The insulative regions contain voids and/or low-k dielectric material. Capacitors are coupled with the upper surfaces of the conductive redistribution material.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 8, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Guangjun Yang, Vinay Nair, Devesh Dadhich Shreeram, Ashwin Panday, Kangle Li, Zhiqiang Xie, Silvia Borsari, Mohd Kamran Akhtar, Si-Woo Lee
  • Publication number: 20220181434
    Abstract: A vertical transistor comprises a top source/drain region, a bottom source/drain region, a channel region vertically between the top and bottom source/drain regions, and a gate operatively laterally-adjacent the channel region. The top source/drain region and the channel region have a top interface and the bottom source/drain region and the channel region have a bottom interface. The channel region is crystalline and has an average crystal grain size of its crystal grains that is less than 20 nanometers. The channel region at the top interface or at the bottom interface has greater horizontal texture than volume of the crystal grains in the channel region that is vertically between the crystal grains that are at the top and bottom interfaces. Other embodiments and aspects are disclosed.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Yi Fang Lee, Hung-Wei Liu, Ning Lu, Anish A. Khandekar, Jeffery B. Hull, Silvia Borsari
  • Publication number: 20220102348
    Abstract: A method used in forming integrated circuitry comprises forming conductive material over a substrate. The conductive material is patterned into a conductive line that is horizontally longitudinally elongated. The conductive material is vertically recessed in longitudinally-spaced first regions of the conductive line to form longitudinally-spaced conductive pillars that individually are in individual longitudinally-spaced second regions that longitudinally-alternate with the longitudinally-spaced first regions along the conductive line. The conductive pillars project vertically relative to the conductive material in the longitudinally-spaced and vertically-recessed first regions of the conductive line. Electronic components are formed directly above the conductive pillars. Individual of the electronic components are directly electrically coupled to individual of the conductive pillars. Additional methods, including structure independent of method, are disclosed.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Vinay Nair, Silvia Borsari, Ryan L. Meyer, Russell A. Benson, Yi Fang Lee
  • Publication number: 20220059469
    Abstract: A method of forming a microelectronic device comprises forming a conductive shielding material over a conductive shielding structure and a first dielectric structure horizontally adjacent the conductive shielding structure. A second dielectric structure is formed on first dielectric structure and horizontally adjacent the conductive shielding material. The conductive shielding material and the second dielectric structure are patterned to form fin structures extending in parallel in a first horizontal direction. Each of the fin structures comprises two dielectric end structures integral with remaining portions of the second dielectric structure, and an additional conductive shielding structure interposed between the two dielectric end structures in the first horizontal direction. Conductive lines are formed to extend in parallel in the first horizontal direction and to horizontally alternate with the fin structures in a second horizontal direction orthogonal to the first horizontal direction.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 24, 2022
    Inventors: Russell A. Benson, Davide Colombo, Yan Li, Terrence B. McDaniel, Vinay Nair, Silvia Borsari
  • Patent number: 11257766
    Abstract: A method of forming a microelectronic device comprises forming a conductive shielding material over a conductive shielding structure and a first dielectric structure horizontally adjacent the conductive shielding structure. A second dielectric structure is formed on first dielectric structure and horizontally adjacent the conductive shielding material. The conductive shielding material and the second dielectric structure are patterned to form fin structures extending in parallel in a first horizontal direction. Each of the fin structures comprises two dielectric end structures integral with remaining portions of the second dielectric structure, and an additional conductive shielding structure interposed between the two dielectric end structures in the first horizontal direction. Conductive lines are formed to extend in parallel in the first horizontal direction and to horizontally alternate with the fin structures in a second horizontal direction orthogonal to the first horizontal direction.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: February 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Russell A. Benson, Davide Colombo, Yan Li, Terrence B. McDaniel, Vinay Nair, Silvia Borsari
  • Patent number: 11239242
    Abstract: Some embodiments include a method of forming an integrated assembly. A construction is formed to include a conductive structure having a top surface, and a pair of sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface, and rails are along the sidewall surfaces. The rails include sacrificial material. The sacrificial material is removed to leave openings. Sealant material is formed to extend within the openings. The sealant material has a lower dielectric constant than the insulative material. Some embodiments include an integrated assembly having a conductive structure with a top surface and a pair of opposing sidewall surfaces extending downwardly from the top surface. Insulative material is over the top surface. Voids are along the sidewall surfaces and are capped by sealant material. The sealant material has a lower dielectric constant than the insulative material.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Guangjun Yang, Mohd Kamran Akhtar, Silvia Borsari, Alex J. Schrinsky
  • Publication number: 20220020748
    Abstract: An apparatus comprises a conductive structure, another conductive structure, and a laminate spacer structure interposed between the conductive structure and the another conductive structure in a first direction. The laminate spacer structure comprises a dielectric spacer structure, another dielectric spacer structure, and an additional dielectric spacer structure interposed between the dielectric spacer structure and the another dielectric spacer structure. The additional dielectric spacer structure comprises at least one dielectric material, and gas pockets dispersed within the at least one dielectric material. Additional apparatuses, memory devices, electronic systems, and a method of forming an apparatus are also described.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 20, 2022
    Inventors: Silvia Borsari, Stian E. Wood, Haoyu Li, Yiping Wang
  • Publication number: 20220005930
    Abstract: Apparatus (e.g., semiconductor devices) include stack structures with at least one conductive region and at least one nonconductive material. A multidielectric spacer is adjacent the at least one conductive region and comprises first and second dielectric materials. The first dielectric material, adjacent the at least one conductive region, includes silicon and nitrogen. The second dielectric material, adjacent the first dielectric material, comprises silicon-carbon bonds and defines a substantially straight, vertical, outer sidewall. In methods to form such apparatus, the first dielectric material may be formed with selectivity on the at least one conductive region, and the second dielectric material may be formulated and formed to exhibit etch resistance.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Inventors: John A. Smythe, Silvia Borsari, Francois H. Fabreguette, Sutharsan Ketharanathan
  • Publication number: 20210408039
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. A wall is formed in individual of the trenches laterally-between immediately-laterally-adjacent of the memory-block regions. The forming of the wall comprises lining sides of the trenches with insulative material comprising at least one of an insulative nitride and elemental-form boron. A core material is formed in the trenches to span laterally-between the at least one of the insulative nitride and the elemental-form boron. Structure independent of method is disclosed.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 30, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Cole Smith, Ramey M. Abdelrahaman, Silvia Borsari, Chris M. Carlson, David Daycock, Matthew J. King, Jin Lu
  • Patent number: 11189484
    Abstract: Methods, apparatuses, and systems related to a semiconductor nitridation passivation are described. An example method includes performing a dry etch process on a semiconductor structure on a wafer in a semiconductor fabrication process. The method further includes performing a dry strip process on the semiconductor structure. The method further includes performing a first wet strip clean process on the semiconductor. The method further includes performing a second wet strip clean process on the semiconductor. The method further includes performing a nitridation passivation on the semiconductor structure to avoid oxidization of the semiconductor structure. The method further performing a spacer material deposition on the semiconductor structure.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 30, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Russell A. Benson, Silvia Borsari, Vinay Nair, Ying Rui, Somik Mukherjee
  • Patent number: 11164873
    Abstract: An apparatus comprises a conductive structure, another conductive structure, and a laminate spacer structure interposed between the conductive structure and the another conductive structure in a first direction. The laminate spacer structure comprises a dielectric spacer structure, another dielectric spacer structure, and an additional dielectric spacer structure interposed between the dielectric spacer structure and the another dielectric spacer structure. The additional dielectric spacer structure comprises at least one dielectric material, and gas pockets dispersed within the at least one dielectric material. Additional apparatuses, memory devices, electronic systems, and a method of forming an apparatus are also described.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: November 2, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Silvia Borsari, Stian E. Wood, Haoyu Li, Yiping Wang