Patents by Inventor Silviu Reinhorn

Silviu Reinhorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6924891
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: August 2, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan
  • Publication number: 20050128473
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Application
    Filed: January 21, 2005
    Publication date: June 16, 2005
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan
  • Publication number: 20050030527
    Abstract: Bright and dark field imaging operations in an optical inspection system occur along substantially the same optical path using the same light source by producing either a circular or an annular laser beam. Multiple beam splitting is achieved through the use of a diffractive optical element having uniform diffraction efficiency. A confocal arrangement for bright field and dark field imaging can be applied with multiple beam scanning for suppressing the signal from under-layers. A scan direction not perpendicular to the direction of movement of a target provides for improved die-to-die comparisons.
    Type: Application
    Filed: February 24, 2004
    Publication date: February 10, 2005
    Inventor: Silviu Reinhorn
  • Patent number: 6853475
    Abstract: A system for inspecting a specimen, such as a semiconductor wafer that uses a laser light source for providing a beam of light. The beam is applied to a traveling lens acousto-optic device having an active region and responsive to an RF input signal to selectively generate plural traveling lenses in the active region. The traveling lens acousto-optic device is operative to receive the light beam and generate plural flying spot beams, at the respective focus of each of the generated traveling lenses. A light detector unit, having a plurality of detector sections, each detector section having a plurality of light detectors and at least one multi-stage storage device operative to receive in parallel an input from the plurality of light detectors, is used to generate useable scan data. Information stored in each of the storage devices is serially read out concurrently from the multiple stages.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: February 8, 2005
    Assignee: Applied Materials INC
    Inventors: Haim Feldman, Emanuel Elyasaf, Nissim Elmaliach, Ron Naftali, Boris Golberg, Silviu Reinhorn
  • Patent number: 6853446
    Abstract: A variable illumination angle inspection system is provided, including a light source providing a light beam and a scanner imparting scanning deflection to the light beam to provide a scanning beam approaching a substrate at a first angle. A deflection element is selectively insertable into an optical path of the scanning beam to deflect the scanning beam so as to cause the scanning beam to approach the substrate at a second angle.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: February 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Gilad Almogy, Hadar Mazaki, Zvi Howard Phillip, Silviu Reinhorn, Boris Goldberg, Daniel I. Some
  • Publication number: 20040235208
    Abstract: Bright and dark field imaging operations in an optical inspection system occur along substantially the same optical path using the same light source by producing either a circular or an annular laser beam. Multiple beam splitting is achieved through the use of a diffractive optical element having uniform diffraction efficiency. A confocal arrangement for bright field and dark field imaging can be applied with multiple beam scanning for suppressing the signal from under-layers. A scan direction not perpendicular to the direction of movement of a target provides for improved die-to-die comparisons.
    Type: Application
    Filed: July 14, 2004
    Publication date: November 25, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Silviu REINHORN
  • Patent number: 6809808
    Abstract: A system for inspecting a specimen, such as a semiconductor wafer that uses a laser light source for providing a beam of light. The beam is applied to a traveling lens acousto-optic device having an active region and responsive to an RF input signal to selectively generate plural traveling lenses in the active region. The traveling lens acousto-optic device is operative to receive the light beam and generate plural flying spot beams, at the respective focus of each of the generated traveling lenses. A light detector unit, having a plurality of detector sections, each detector section having a plurality of light detectors and at least one multi-stage storage device operative to receive in parallel an input from the plurality of light detectors, is used to generate useable scan data. Information stored in each of the storage devices is serially read out concurrently from the multiple stages.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: October 26, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Haim Feldman, Emanuel Elyasaf, Nissim Elmaliach, Ron Naftali, Boris Golberg, Silviu Reinhorn
  • Publication number: 20040201842
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Application
    Filed: April 29, 2004
    Publication date: October 14, 2004
    Applicant: APPLIED MATERIALS, INC
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel ElYasaf, Shimon Yalov, Boaz Kenan
  • Patent number: 6798505
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: September 28, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elyasaf, Shimon Yalov, Boaz Kenan
  • Patent number: 6791099
    Abstract: An optical inspection apparatus and method is provided that utilizes both linear and nonlinear optical phenomena to detect defects. Embodiments include irradiating a portion of the surface of an article, such as a semiconductor device, with a light beam, such as a scanning laser at an incident wavelength. The light emanating from the irradiated surface portion is then separated into light at the incident wavelength and light at one or more predetermined non-incident wavelengths, as by a diffraction grating, prism or filters. The light at the incident and nonincident wavelengths is sent to separate detectors, such as photomultipliers (PMT), which respectively convert the detected linear optical phenomena (representing, e.g., surface topography) into an electrical signal, and the detected nonlinear optical phenomena, such as fluorescence, Raman scattering and/or second harmonic generation, into electrical signals representing, e.g., chemical composition and material interfaces.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: September 14, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Daniel I. Some, Silviu Reinhorn, Gilad Almogy
  • Patent number: 6788445
    Abstract: A polygon scanning system and method is provided wherein two or more light beams impinge at different incident angles on a polygon facet and are sequentially used for scanning the surface of a substrate as the polygon is rotated. Embodiments include a system comprising a polygon having a reflective facet, a rotation mechanism for rotating the polygon, and a light source for directing a plurality of light beams to impinge on the facet such that each light beam impinges on the facet at a different incident angle. Each light beam is reflected by the facet to scan a particular portion of a surface of a substrate during a respective time interval when the rotation mechanism is rotating the polygon. Each of the plurality of light beams is reflected onto the substrate surface using a respective portion of the facet surface, such that the sum of the respective portions of the facet surface used to reflect the light beams is a very large percentage of the total surface area.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: September 7, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Boris Goldberg, Silviu Reinhorn
  • Publication number: 20040080740
    Abstract: A system for inspecting a specimen, such as a semiconductor wafer that uses a laser light source for providing a beam of light. The beam is applied to a traveling lens acousto-optic device having an active region and responsive to an RF input signal to selectively generate plural traveling lenses in the active region. The traveling lens acousto-optic device is operative to receive the light beam and generate plural flying spot beams, at the respective focus of each of the generated traveling lenses. A light detector unit, having a plurality of detector sections, each detector section having a plurality of light detectors and at least one multi-stage storage device operative to receive in parallel an input from the plurality of light detectors, is used to generate useable scan data. Information stored in each of the storage devices is serially read out concurrently from the multiple stages.
    Type: Application
    Filed: July 11, 2003
    Publication date: April 29, 2004
    Applicant: APPLIED MATERIALS, INC
    Inventors: Haim Feldman, Emanuel Elyasaf, Nissim Elmaliach, Ron Naftali, Boris Golberg, Silviu Reinhorn
  • Publication number: 20040075068
    Abstract: A system for inspecting a specimen, such as a semiconductor wafer that uses a laser light source for providing a beam of light. The beam is applied to a traveling lens acousto-optic device having an active region and responsive to an RF input signal to selectively generate plural traveling lenses in the active region. The traveling lens acousto-optic device is operative to receive the light beam and generate plural flying spot beams, at the respective focus of each of the generated traveling lenses. A light detector unit, having a plurality of detector sections, each detector section having a plurality of light detectors and at least one multi-stage storage device operative to receive in parallel an input from the plurality of light detectors, is used to generate useable scan data. Information stored in each of the storage devices is serially read out concurrently from the multiple stages.
    Type: Application
    Filed: July 11, 2003
    Publication date: April 22, 2004
    Applicant: APPLIED MATERIALS, INC
    Inventors: Haim Feldman, Emanuel Elyasaf, Nissim Elmaliach, Ron Naftali, Boris Golberg, Silviu Reinhorn
  • Patent number: 6671398
    Abstract: Novel method and apparatus are disclosed for inspecting a wafer surface to detect the presence thereon of exposed conductive material, particularly for determining the integrity of contact holes and vias, in semiconductor wafer manufacturing. The method comprises the steps of irradiating a spot of the wafer surface with a beam having a wavelength sufficiently shorter than the working function of the metal, such as deep UV light beam, collecting the electrons released by the irradiated wafer, generating an electrical signal that is a function of the collected electrons, and inspecting the signal to determine whether the contact holes or vias within the irradiated wafer spot are open. The apparatus comprises a vacuum chamber having therein a stage and chuck for supporting the wafer. An illumination source generates irradiating energy which is formed into a beam using appropriate optics so as to obtain the desired beam spot of the wafer's surface.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Silviu Reinhorn, Gilad Almogy
  • Publication number: 20030197858
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Application
    Filed: May 12, 2003
    Publication date: October 23, 2003
    Applicant: APPLIED MATERIALS, INC
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan
  • Publication number: 20030184835
    Abstract: A polygon scanning system and method is provided wherein two or more light beams impinge at different incident angles on a polygon facet and are sequentially used for scanning the surface of a substrate as the polygon is rotated. Embodiments include a system comprising a polygon having a reflective facet, a rotation mechanism for rotating the polygon, and a light source for directing a plurality of light beams to impinge on the facet such that each light beam impinges on the facet at a different incident angle. Each light beam is reflected by the facet to scan a particular portion of a surface of a substrate during a respective time interval when the rotation mechanism is rotating the polygon. Each of the plurality of light beams is reflected onto the substrate surface using a respective portion of the facet surface, such that the sum of the respective portions of the facet surface used to reflect the light beams is a very large percentage of the total surface area.
    Type: Application
    Filed: January 14, 2002
    Publication date: October 2, 2003
    Inventors: Boris Goldberg, Silviu Reinhorn
  • Publication number: 20030179369
    Abstract: A system for inspecting a specimen, such as a semiconductor wafer that uses a laser light source for providing a beam of light. The beam is applied to a traveling lens acousto-optic device having an active region and responsive to an RF input signal to selectively generate plural traveling lenses in the active region. The traveling lens acousto-optic device is operative to receive the light beam and generate plural flying spot beams, at the respective focus of each of the generated traveling lenses. A light detector unit, having a plurality of detector sections, each detector section having a plurality of light detectors and at least one multi-stage storage device operative to receive in parallel an input from the plurality of light detectors, is used to generate useable scan data. Information stored in each of the storage devices is serially read out concurrently from the multiple stages.
    Type: Application
    Filed: March 22, 2002
    Publication date: September 25, 2003
    Applicant: APPLIED MATERIALS, INC
    Inventors: Haim Feldman, Emanuel Elyasaf, Nissim Elmaliach, Ron Naftali, Boris Golberg, Silviu Reinhorn
  • Publication number: 20030156280
    Abstract: Bright and dark field imaging operations in an optical inspection system occur along substantially the same optical path using the same light source by producing either a circular or an annular laser beam. Multiple beam splitting is achieved through the use of a diffractive optical element having uniform diffraction efficiency. A confocal arrangement for bright field and dark field imaging can be applied with multiple beam scanning for suppressing the signal from under-layers. A scan direction not perpendicular to the direction of movement of a target provides for improved die-to-die comparisons.
    Type: Application
    Filed: February 21, 2002
    Publication date: August 21, 2003
    Applicant: Applied Materials, Inc.
    Inventor: Silviu Reinhorn
  • Patent number: 6587194
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: July 1, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan
  • Patent number: 6556294
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: April 29, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan