Patents by Inventor Simon F. Williams

Simon F. Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11154642
    Abstract: Methods to produce laminates including layers of constructs made from P4HB and copolymers thereof have been developed. These laminates may be used as medical implants, or further processed to make medical implants. The laminates are produced at a temperature equal to or greater than the softening points of the P4HB or copolymers thereof. The layers may include oriented forms of the constructs. Orientation can be preserved during lamination so that the laminate is also oriented, when the laminates are formed at temperatures less than the de-orientation temperatures of the layers. The laminate layers may include, for example, films, textiles, including woven, knitted, braided and non-woven textiles, foams, thermoforms, and fibers. The laminates preferably include one or more oriented P4HB films.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 26, 2021
    Assignee: Tepha, Inc.
    Inventors: Said Rizk, David P. Martin, Fabio Felix, Matthew Bernasconi, Bhavin Shah, Simon F. Williams
  • Patent number: 11154393
    Abstract: Full contour absorbable implants for breast surgery redistribute breast volume between the breast's upper and lower poles in exact and desirable ratios. The implants preferably redistribute breast volume so that the upper pole breast volume is 20-40% of the total volume, and the lower pole breast volume is 60-80% of the total volume. The implants are also designed to provide specific curvatures to the poles of the breast, and to angulate the nipple areolar complex slightly skyward so that the patient's nipple is positioned at an angle above the nipple meridian reference line. The implants are designed to be transitory, with sufficient strength retention to allow transition from support of the breast by the implant to support by regenerated host tissue growing in and around the implants, without any significant loss of support during or subsequent to remodeling. The implants may optionally be used with permanent breast implants.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 26, 2021
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams
  • Publication number: 20210244860
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 12, 2021
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20210186702
    Abstract: Devices to repair bone defects prevent the formation of depressions and palpable tissue at bone repair sites. The devices can be used to repair burr holes in the cranium, providing an improved cosmetic result that reduces or eliminates functional handicaps that can result from combing and hairdressing. The devices are secured in bone defects with filament elements, by expanding the device inside the bone defect, or by gluing. Tissue in-growth into the device regenerates bone at the defect site, and prevents the formation of depressions or palpable tissue. The devices preferably comprise a ceramic and poly-4-hydroxybutyrate or copolymer thereof, or a ceramic and poly(butylene succinate) or copolymer thereof.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 24, 2021
    Inventors: Kemal Sariibrahimoglu, Skander LIMEM, Amit Ganatra, Said Rizk, Simon F. Williams
  • Publication number: 20210153997
    Abstract: Described herein are breast implant fixation devices for use in breast reconstruction and breast augmentation. Novel wraps are designed to avert lateral displacement and bottoming out of breast implants, reduce capsular contraction and implant extrusion, eliminate skin indentations and ripples caused by breast implants, and reduce or eliminate palpability. The wraps are adapted to securely fold around the breast implants, limiting relative movement between the wrap and breast implant and reducing wrinkles. Tissue in-growth into the wraps limits movement of the wrap-breast implant assembly and thereby limits movement of the breast implant.
    Type: Application
    Filed: November 17, 2020
    Publication date: May 27, 2021
    Inventors: SKANDER LIMEM, German Oswaldo Hohl Lopez, Simon F. Williams
  • Patent number: 10994057
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 4, 2021
    Assignee: TEPHA, INC.
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20210047484
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 28, 2020
    Publication date: February 18, 2021
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20210046212
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 28, 2020
    Publication date: February 18, 2021
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Patent number: 10874498
    Abstract: Calendered surgical meshes comprising polyhydroxyalkanoate polymers have been developed. These meshes, preferably made from poly-4-hydroxybutyrate or copolymer thereof, have a thickness that is between 50 to 99% of the thickness of the mesh prior to calendering, and a burst strength that is not less than 20% of the burst strength of the mesh prior to calendering. The thinner calendered meshes are particularly suitable for surgical applications where a thinner profile mesh with high burst strength is required, and where it is advantageous to have a mesh with a smooth surface. The meshes may be partially or fully resorbable, and are particularly suitable for use in the treatment of pelvic organ prolapse.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: December 29, 2020
    Assignee: TEPHA, INC.
    Inventors: Said Rizk, Bhavin Shah, David P. Martin, Simon F. Williams
  • Patent number: 10874771
    Abstract: Oriented resorbable implants made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof, have been developed that contain one or more antimicrobial agents to prevent colonization of the implants, and reduce or prevent the occurrence of infection following implantation in a patient. These oriented implants are particularly suitable for use in procedures where prolonged strength retention is necessary and there is a risk of infection. Coverings and receptacles made from poly-4-hydroxybutyrate and copolymers thereof, containing antimicrobial agents, have also been developed for use with implantable devices to prevent colonization of these devices, and to reduce or prevent the occurrence of infection following implantation of these devices in a patient. These coverings and receptacles may be used to hold, or partially or fully cover, devices such as pacemakers and neurostimulators.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: December 29, 2020
    Assignee: TEPHA, INC.
    Inventors: David P. Martin, Said Rizk, Simon F. Williams, Arikha Moses
  • Publication number: 20200390944
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20200390933
    Abstract: Resorbable implants, coverings and receptacles comprising poly(butylene succinate) and copolymers thereof have been developed. The implants are preferably sterilized, and contain less than 20 endotoxin units per device as determined by the limulus amebocyte lysate (LAL) assay, and are particularly suitable for use in procedures where prolonged strength retention is necessary, and can include one or more bioactive agents. The implants may be made from fibers and meshes of poly(butylene succinate) and copolymers thereof, or by 3d printing molding, pultrusion or other melt or solvent processing method. The implants, or the fibers preset therein, may be oriented. These coverings and receptacles may be used to hold, or partially/fully cover, devices such as pacemakers and neurostimulators. The coverings, receptacles and implants described herein, may be made from meshes, webs, lattices, non-wovens, films, fibers, foams, molded, pultruded, machined and 3D printed forms.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Simon F. Williams, Said Rizk, David P. Martin, Skander Limem, Kai Guo, Amit Ganatra, German Oswaldo Hohl Lopez
  • Publication number: 20200375726
    Abstract: Absorbable implants can be used to create volume and shape in soft tissues with regenerated tissue. The implants comprise lattices formed from multiple unit cells. Unit cells can be coils or springs, skeletal polyhedrons, foams, or structures derived from mesh and fiber. The implants may be coated or filled with cells and tissues, and preferably with autologous fat graft. The implants are particularly suitable for use in plastic surgery procedures, for example, to regenerate or augment breast tissue following mastectomy or in mastopexy procedures, and can provide an alternative to the use of permanent breast implants in these procedures.
    Type: Application
    Filed: April 27, 2020
    Publication date: December 3, 2020
    Inventors: Skander LIMEM, Said Rizk, Simon F. Williams
  • Publication number: 20200276006
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Application
    Filed: February 21, 2020
    Publication date: September 3, 2020
    Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
  • Publication number: 20200240044
    Abstract: Resorbable multifilament yarns and monofilament fibers including poly-4-hydroxybutyrate and copolymers thereof with high tenacity or high tensile strength have been developed. The yarns and fibers are produced by cold drawing the multifilament yarns and monofilament fibers before hot drawing the yarns and fibers under tension at temperatures above the melt temperature of the polymer or copolymer. These yarns and fibers have prolonged strength retention in vivo making them suitable for soft tissue repairs where high strength and strength retention is required. The multifilament yarns have tenacities higher than 8.1 grams per denier, and in vivo, retain at least 65% of their initial strength at 2 weeks. The monofilament fibers retain at least 50% of their initial strength at 4 weeks in vivo. The monofilament fibers have tensile strengths higher than 500 MPa. These yarns and fibers may be used to make various medical devices for various applications.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 30, 2020
    Inventors: Amit Ganatra, Fabio Felix, Bhavin Shah, Matthew Bernasconi, Said Rizk, David P. Martin, Simon F. Williams
  • Patent number: 10722345
    Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 28, 2020
    Assignee: TEPHA, INC.
    Inventors: Skander Limem, Emily Stires, Rebecca Holmes, Said Rizk, Arikha Moses, Fabio Felix, Bruce Van Natta, Antonio Fosco, David P. Martin, Simon F. Williams
  • Patent number: D889654
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 7, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams
  • Patent number: D889655
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: July 7, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams
  • Patent number: D892329
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: August 4, 2020
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams
  • Patent number: D927690
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: August 10, 2021
    Assignee: Tepha, Inc.
    Inventors: Skander Limem, Said Rizk, Simon F. Williams