Patents by Inventor Simone Monika Ritter

Simone Monika Ritter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11906746
    Abstract: A light guide plate includes: an optical glass, the optical glass having a refractive index nd of at least 1.75 or of at least 1.80 and including Nb2O5 in an amount of at least 15 mol % and P2O5 in an amount of at least 19 mol %, the light guide plate having an internal transmission of at least 0.80 or of at least 0.90, measured at a wavelength of 440 nm and a sample thickness of 10 mm.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: February 20, 2024
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Bianca Schreder
  • Patent number: 11724956
    Abstract: The present disclosure relates to a glass composition as well as a glass powder. The disclosure also relates to the use in the dental field, e.g. as dental material such as dental filling or dental restauration material, in particular as or for the production of a glass ionomer cement, for example for the treatment and/or for the filling of cavities in human and/or animal teeth and/or for tooth restoration.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: August 15, 2023
    Assignee: SCHOT T AG
    Inventors: Sabine Pichler-Wilhelm, Jens Suffner, Simone Monika Ritter
  • Patent number: 11713275
    Abstract: The present disclosure relates to compositions that can be used for optical fibers and other systems that transmit light in the near-, mid- and/or far-ranges of the infrared spectrum, such as for example in the wavelength range of 1.5 ?m to 14 ?m. The optical fibers may comprise a light-transmitting chalcogenide core composition and a cladding composition. In some embodiments, the light-transmitting chalcogenide core composition has a refractive index n(core) and a coefficient of thermal expansion CTE(core), and the cladding composition has a refractive index n(cladding) and a coefficient of thermal expansion CTE(cladding), wherein n(cladding) is less than n(core) and in some embodiments wherein CTE(cladding) is less than CTE(core). In some embodiments, the chalcogenide glass core composition comprises a) sulfur and/or selenium, b) germanium, and c) gallium, indium, tin and/or one or more metal halides.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: August 1, 2023
    Assignee: SCHOTT CORPORATION
    Inventors: Bernd Schultheis, Nathan Carlie, Lothar Willmes, Simone Monika Ritter, Bernd Hoppe, William James
  • Publication number: 20230192527
    Abstract: A glass article has a refractive index nG?1.95 and an R-number in a range of from 0.900 to 1.050. The R-number is calculated according to the following formula: R = ( n G - 1 ) ? ( ln [ ? G 2 - ? min 2 ? G 2 - ? max 2 · ? max 2 ? min 2 ] 42 ? ln [ ? B 2 - ? min 2 ? B 2 - ? max 2 · ? R 2 - ? max 2 ? R 2 - ? min 2 ] + 1 2.8 ) . ?R=656 nm, ?G=587 nm and ?B=486 nm, ?min=33 nm, and nG is a refractive index of the glass article at a wavelength of 587 nm.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 22, 2023
    Applicant: Schott AG
    Inventors: Jens Ulrich Thomas, Frank-Thomas Lentes, Simone Monika Ritter, Benedikt Ziebarth
  • Publication number: 20230192528
    Abstract: An optical glass has a refractive index nd of more than 2.10 and includes at least TiO2, NbO2.5, LaO1.5, SiO2, and B2O3. The glass has the following features: a cation parameter K of 1.8<K?2.8, wherein K=(Ti-eq.+SiO2+(BO1.5)/2)/(La-eq.), the molar fractions of Ti-eq., SiO2, BO1.5 and La-eq. in the cation parameter K being in cat %; a sum total of glass components SiO2 and B2O3 of 8.0 mol %?(SiO2+B2O3)?20.0 mol %, the proportion of B2O3 being >0 mol % and the proportion of SiO2>0 mol %; and a temperature Tmax?1330° C.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 22, 2023
    Applicant: Schott AG
    Inventors: Simone Monika Ritter, Sebastian Leukel, Benedikt Ziebarth, Stefanie Hansen
  • Publication number: 20230105927
    Abstract: A light guide plate includes: an optical glass, the optical glass having a refractive index nd of at least 1.75 or of at least 1.80 and including Nb2O5 in an amount of at least 15 mol % and P2O5 in an amount of at least 19 mol %, the light guide plate having an internal transmission of at least 0.80 or of at least 0.90, measured at a wavelength of 440 nm and a sample thickness of 10 mm.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 6, 2023
    Applicant: Schott AG
    Inventors: Simone Monika Ritter, Bianca Schreder
  • Patent number: 11520150
    Abstract: The present disclosure relates to a device, in particular an augmented reality device. In particular, the disclosure relates to a device, a kit, a process for making the device, and a process for making a visual impression.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: December 6, 2022
    Assignee: SCHOTT AG
    Inventors: Simone Monika Ritter, Antoine Carré, Peter Naß, Frank-Thomas Lentes
  • Publication number: 20220332630
    Abstract: A glass includes a composition characterized by the following constituent phases (in mol-%): 20-80 lanthanum titanate; 10-50 lanthanum niobate; 0-60 lanthanum molybdenum borate; 2-40 lanthanum borate; 2-40 yttrium borate; 0-40 gadolinium borate; 2-40 zirconium silicate; 2-40 diboron trioxide; and 0-20 silicon dioxide. A refractive index is at least 2.00.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 20, 2022
    Applicant: Schott AG
    Inventors: Ulrich Fotheringham, Simone Monika Ritter, Bernd Rüdinger, Peter Nabe
  • Publication number: 20220162115
    Abstract: The present invention relates to a chemically strengthened optical component comprising an optical glass, having a depth of layer (DoL) of 1.0 to 50.0 ?m, wherein the optical glass has a refractive index nd of at least 1.65, preferably at least 1.70, and wherein the optically glass comprises at least 5 mol % of a total of Li2O, Na2O and K2O or a combination of two or more thereof. The invention furthermore relates to a method for preparing the chemically strengthened optical component and the use thereof.
    Type: Application
    Filed: November 22, 2021
    Publication date: May 26, 2022
    Applicants: SCHOTT Glass Technologies (Suzhou) Co. Ltd., SCHOTT AG
    Inventors: Yigang Li, Haiyi Bian, Simone Monika Ritter, Hongyun Wang
  • Patent number: 11136260
    Abstract: The invention relates to a radiopaque glass having a refractive index nd of 1.480 to 1.561, this glass, apart from impurities at most, being free from SrO and PbO. The glass is based on the SiO2, Al2O3 and B2O3 system. The radiopacity can be adjusted using Cs2O in particular in combination with BaO and/or SnO2 optionally in conjunction with fluorine. The glass may be used in particular as dental glass or as optical glass.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 5, 2021
    Assignee: SCHOTT AG
    Inventors: Ulf Dahlmann, Sabine Pichler-Wilhelm, Jens Suffner, Simone Monika Ritter
  • Publication number: 20210130222
    Abstract: A CuO-containing glass has a refractive index n of at least 1.7, a minimum absorption coefficient in a visible wavelength range from 380 nm to 780 nm is located between 450 nm and 550 nm, a difference of the absorption coefficient normalized to CuO weight percent at a wavelength of 700 nm and the minimum absorption coefficient normalized to CuO weight percent in the visible wavelength range from 380 nm to 780 nm is at least 10/cm. The glass includes the following components (in % by weight based on oxide): 0-70 wt-% La2O3, 0-70 wt-% Y2O3; 20-70 wt-% a sum of La2O3+Y2O3+RE2O3; 10-40 wt-% B2O3; 0-40 wt-% SiO2; 0-10 wt-% Nb2O5; 0-30 wt-% ZnO; 0-20 wt-% ZrO2; 0-20 wt-% Ta2O5and 0.1-10 wt-% CuO. RE2O3 includes Ce2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3, Er2O3, Tm2O3, Yb2O3, Lu2O3 and mixtures of two or more thereof.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 6, 2021
    Applicant: SCHOTT Glass Technologies (Suzhou) Co. Ltd.
    Inventors: Yigang Li, Huiyan Fan, Ralf Biertümpfel, Simone Monika Ritter
  • Patent number: 10988408
    Abstract: A conversion material for a white or colored light source is provided. The material includes a matrix glass that, as bulk material, for a thickness of about 1 mm, has a pure transmission of greater than 80% in the wavelength region from 350 to 800 nm and in the region in which the primary light source emits light, wherein the sum of transmission and reflection of the sintered matrix glass without luminophore is at least greater than 80% in the spectral region from 350 nm to 800 nm and in the spectral region in which the primary light source emits light.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: April 27, 2021
    Assignee: SCHOTT AG
    Inventors: Rainer Liebald, Claudia Stolz, Peter Brix, Simone Monika Ritter, Peter Nass, Dieter Goedeke, Sabine Pichler-Wilhelm, Sabrina Wimmer
  • Publication number: 20210096376
    Abstract: The present disclosure relates to a device, in particular an augmented reality device. In particular, the disclosure relates to a device, a kit, a process for making the device, and a process for making a visual impression. The present disclosure relates to a device including: a. a grouping of x optical elements, each optical element having a front face and a back face, the x optical elements being arranged in a stack from first to last in which the front face of an optical element faces the back face of the next optical element, and b. a spacer region made of a material having a refractive index below 1.
    Type: Application
    Filed: September 28, 2020
    Publication date: April 1, 2021
    Applicant: SCHOTT AG
    Inventors: Simone Monika Ritter, Antoine Carré, Peter Naß, Frank-Thomas Lentes
  • Publication number: 20210032154
    Abstract: The present disclosure relates to a glass composition as well as a glass powder. The disclosure also relates to the use in the dental field, e.g. as dental material such as dental filling or dental restauration material, in particular as or for the production of a glass ionomer cement, for example for the treatment and/or for the filling of cavities in human and/or animal teeth and/or for tooth restoration.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 4, 2021
    Inventors: Sabine Pichler-Wilhelm, Jens Suffner, Simone Monika Ritter
  • Publication number: 20200199011
    Abstract: A glass includes a composition which is characterized by the following constituent phases of the glass: 20-80 mol % silicon dioxide; 0-40 mol % wollastonite; 0-30 mol % cordierite; 0-40 mol % anorthite; 0-40 mol % strontium-feldspar; 0-20 mol % celsian; 0-40 mol % hardystonite; 0-10 mol % titanite; and 0-15 mol % gittinsite. Where the composition is specified in mol % relative to oxides, the glass contains less than 11.5 mol % Al2O3 and less than 5000 ppm (molar, relative to the oxides) of each of B2O3, Li2O, Na2O, K2O, Rb2O and Cs2O. A calculated value for the removal rate according to ISO 695 is not more than 81.9 mg/(dm2 3 h) and a calculated value for the removal rate in acid according to DIN12116 is less than 3.5 mg(dm2 6 h).
    Type: Application
    Filed: December 20, 2019
    Publication date: June 25, 2020
    Applicant: Schott AG
    Inventors: Ulrich Fotheringham, Peter Naß, Stephan Tratzky, Simone Monika Ritter, Rainer Eichholz, Christoph Berndhäuser
  • Publication number: 20200010356
    Abstract: A glass, a glass article made of the glass as well as uses and production methods are disclosed. The glass constituents are selected such that excellent scratch resistance and impact strength are provided. The glass has a composition characterized by the following constituent phases: 15-60 mol % reedmergnerite; 20-60 mol % albite; 0-20 mol % nepheline; 0-20 mol % orthoclase; 0-20 mol % parakeldyshite; 0-20 mol % narsarsukite; 0.1-30 mol % disodium zinc silicate; 0-4 mol % diboron trioxide; 0-20 mol % cordierite; and 0-20 mol % danburite. A quotient of a coefficient of thermal expansion of the glass multiplied by 1000 (in ppm/K) and the product of a pH value and a removal rate in alkaline environment (in mg/(dm23h)) according to ISO 695 is at least 8 and the removal rate in alkaline environment according to ISO 695 is at most 115 mg/(dm23h).
    Type: Application
    Filed: July 2, 2019
    Publication date: January 9, 2020
    Applicant: Schott AG
    Inventors: Ulrich Fotheringham, Holger Wegener, Oliver Hochrein, Simone Monika Ritter, Wolfgang Mannstadt, Christoph Berndhäuser, Christoph Gross
  • Publication number: 20200010353
    Abstract: A glass is described, a glass article made of the glass as well as uses and production methods. The glass constituents are selected such that it results in excellent chemical stability and ion ex-changeability. The glass has a composition characterized by the following glass constituent phases: 0-35 mol % reedmergnerite; 10-60 mol % albite; 3.5-25 mol % orthoclase; 0-40 mol % natrosilite; 0-20 mol % parakeldyshite; 0-20 mol % narsarsukite; 0-35 mol % disodium zinc silicate; 0-35 mol % silicon dioxide; 0-30 mol % cordierite; and 0-20 mol % danburite. A quotient of a coefficient of thermal expansion of the glass multiplied by 1000 (in ppm/K) and the product of a pH value and a removal rate in alkaline environment (in mg/(dm23h)) according to ISO 695 is at least 9.25.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 9, 2020
    Applicant: Schott AG
    Inventors: Ulrich Fotheringham, Holger Wegener, Oliver Hochrein, Simone Monika Ritter, Wolfgang Mannstadt, Christoph Berndhäuser, Christoph Gross
  • Publication number: 20200010355
    Abstract: The present invention relates to glasses, such as e.g. thin or thinnest glasses, but also to glasses for the production of tubular glass, carpules and syringes as well as other pharmaceutical vessels. The glasses are characterized by a high chemical prestressability (tem-perability) with very well alkali, hydrolytic and/or acid resistance as well as an advantageous coefficient of thermal expansion. The glass has a composition characterized by the following constituent phases: 0-60 mol % reedmergnerite; 20-60 mol % albite; 0-30 mol % orthoclase; 0-20 mol % natrosilite; 0-20 mol % sodium metasilicate; 0-20 mol % parakeldyshite; 0-20 mol % narsarsukite; 0-20 mol % disodium zinc silicate; 0-21 mol % cordierite; and 0-20 mol % danburite. A quotient of a coefficient of thermal expansion of the glass multiplied by 1000 (in ppm/K) and the product of a pH value and a removal rate in alkaline environment (in mg/(dm23h)) according to ISO 695 is at least 9.0.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 9, 2020
    Applicant: Schott AG
    Inventors: Ulrich Fotheringham, Holger Wegener, Oliver Hochrein, Simone Monika Ritter, Wolfgang Mannstadt, Christoph Berndhäuser, Christoph Groß
  • Publication number: 20190292094
    Abstract: The present disclosure relates to compositions that can be used for optical fibers and other systems that transmit light in the near-, mid- and/or far-ranges of the infrared spectrum, such as for example in the wavelength range of 1.5 ?m to 14 ?m. The optical fibers may comprise a light-transmitting chalcogenide core composition and a cladding composition. In some embodiments, the light-transmitting chalcogenide core composition has a refractive index n(core) and a coefficient of thermal expansion CTE(core), and the cladding composition has a refractive index n(cladding) and a coefficient of thermal expansion CTE(cladding), wherein n(cladding) is less than n(core) and in some embodiments wherein CTE(cladding) is less than CTE(core). In some embodiments, the chalcogenide glass core composition comprises a) sulfur and/or selenium, b) germanium, and c) gallium, indium, tin and/or one or more metal halides.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Applicant: SCHOTT CORPORATION
    Inventors: Bernd Schultheis, Nathan Carlie, Lothar Willmes, Simone Monika Ritter, Bernd Hoppe, William James
  • Publication number: 20190233325
    Abstract: The invention relates to a radiopaque glass having a refractive index nd of 1.480 to 1.561, this glass, apart from impurities at most, being free from SrO and PbO. The glass is based on the SiO2, Al2O3 and B2O3 system. The radiopacity can be adjusted using Cs2O in particular in combination with BaO and/or SnO2 optionally in conjunction with fluorine. The glass may be used in particular as dental glass or as optical glass.
    Type: Application
    Filed: April 8, 2019
    Publication date: August 1, 2019
    Applicant: SCHOTT AG
    Inventors: Ulf Dahlmann, Sabine Pichler-Wilhelm, Jens Suffner, Simone Monika Ritter