Patents by Inventor Simone Paulotto

Simone Paulotto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072417
    Abstract: An electronic device may be provided with a dielectric cover layer, a dielectric substrate, and a phased antenna array on the dielectric substrate for conveying millimeter wave signals through the dielectric cover layer. The array may include conductive traces mounted against the dielectric layer. The conductive traces may form patch elements or parasitic elements for the phased antenna array. The dielectric layer may have a dielectric constant and a thickness selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The substrate may include fences of conductive vias that laterally surround each of the antennas within the array. When configured in this way, signal attenuation, destructive interference, and surface wave generation associated with the presence of the dielectric layer over the phased antenna array may be minimized.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Jennifer M. Edwards, Harish Rajagopalan, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Siwen Yong, Matthew A. Mow, Mattia Pascolini
  • Patent number: 11863224
    Abstract: An electronic device may include a transmission line path having a signal conductor embedded in a substrate. A contact pad may be patterned on a surface of the substrate. A radio-frequency component may be mounted to the contact pad using solder. Multi-layer impedance matching structures may couple the signal conductor to the contact pad. The matching structures may include a set of via pads and a set of conductive vias coupled in series between the signal conductor and the contact pad. The area of the via pads may vary across the set of via pads and/or the aspect ratio of the conductive vias may vary across the set of conductive vias. The matching structures may perform impedance matching between the signal conductor and the radio-frequency component at frequencies greater than 10 GHz while occupying a minimal amount of space in the device.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 2, 2024
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Harish Rajagopalan, Jennifer M. Edwards, Simone Paulotto, Siwen Yong
  • Patent number: 11811133
    Abstract: An electronic device may be provided with a dielectric cover layer, a dielectric substrate, and a phased antenna array on the dielectric substrate for conveying millimeter wave signals through the dielectric cover layer. The array may include conductive traces mounted against the dielectric layer. The conductive traces may form patch elements or parasitic elements for the phased antenna array. The dielectric layer may have a dielectric constant and a thickness selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The substrate may include fences of conductive vias that laterally surround each of the antennas within the array. When configured in this way, signal attenuation, destructive interference, and surface wave generation associated with the presence of the dielectric layer over the phased antenna array may be minimized.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: November 7, 2023
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Harish Rajagopalan, Simone Paulotto, Bilgehan Avser, Hao Xu, Rodney A. Gomez Angulo, Siwen Yong, Matthew A. Mow, Mattia Pascolini
  • Publication number: 20230327339
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Mattia Pascolini
  • Patent number: 11762075
    Abstract: An electronic device such as a wristwatch may be provided with a phased antenna array for conveying first signals at a first frequency between 10 GHz and 300 GHz and a non-millimeter wave antenna for conveying second signals at a second frequency below 10 GHz. The device may include conductive housing sidewalls and a display. Conductive structures in the display and the conductive housing sidewalls may define a slot element in the non-millimeter wave antenna. The phased antenna array may be mounted within the slot element, aligned with a spatial filter in the display, or aligned with a dielectric window in the conductive housing sidewalls. Control circuitry may process signals transmitted by the phased antenna array and a reflected version of the transmitted signals that has been received by the phased antenna array to detect a range between the device and an external object.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: September 19, 2023
    Assignee: Apple Inc.
    Inventors: Jayesh Nath, Simone Paulotto, Mario Martinis, Eduardo Jorge Da Costa Bras Lima, Andrea Ruaro, Carlo Di Nallo, Matthew A. Mow, Mattia Pascolini
  • Patent number: 11735821
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: August 22, 2023
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Mattia Pascolini
  • Publication number: 20230261695
    Abstract: An electronic device may be provided with an antenna module having a substrate. A phased antenna array of dielectric resonator antennas and a radio-frequency integrated circuit for the array may be mounted to one or more surfaces of the substrate. The dielectric resonator antennas may include dielectric columns excited by feed probes. The feed probes may be printed onto sidewalls of the dielectric columns or may be pressed against the sidewalls by biasing structures. A plastic substrate may be molded over each dielectric column and each of the feed probes in the array. The feed probes may cover multiple polarizations. The array may include elements for covering multiple frequency bands. The dielectric columns may be aligned a longitudinal axis and may be rotated at a non-zero and non-perpendicular angle with respect to the longitudinal axis.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Harish Rajagopalan, Bilgehan Avser, David Garrido Lopez, Forhad Hasnat, Mattia Pascolini, Mikal Askarian Amiri, Rodney A. Gomez Angulo, Thomas W. Yang, Jiechen Wu, Eric N. Nyland, Simone Paulotto, Jennifer M. Edwards, Matthew D. Hill, Ihtesham H. Chowdhury, David A. Hurrell, Siwen Yong, Jiangfeng Wu, Daniel C. Wagman, Soroush Akbarzadeh, Robert Scritzky, Subramanian Ramalingam
  • Patent number: 11728569
    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: August 15, 2023
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew D. Hill, Mattia Pascolini
  • Patent number: 11700035
    Abstract: An electronic device may be provided with an antenna module having a substrate. A phased antenna array of dielectric resonator antennas and a radio-frequency integrated circuit for the array may be mounted to one or more surfaces of the substrate. The dielectric resonator antennas may include dielectric columns excited by feed probes. The feed probes may be printed onto sidewalls of the dielectric columns or may be pressed against the sidewalls by biasing structures. A plastic substrate may be molded over each dielectric column and each of the feed probes in the array. The feed probes may cover multiple polarizations. The array may include elements for covering multiple frequency bands. The dielectric columns may be aligned a longitudinal axis and may be rotated at a non-zero and non-perpendicular angle with respect to the longitudinal axis.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: July 11, 2023
    Assignee: Apple Inc.
    Inventors: Harish Rajagopalan, Bilgehan Avser, David Garrido Lopez, Forhad Hasnat, Mattia Pascolini, Mikal Askarian Amiri, Rodney A. Gomez Angulo, Thomas W. Yang, Jiechen Wu, Eric N. Nyland, Simone Paulotto, Jennifer M. Edwards, Matthew D. Hill, Ihtesham H. Chowdhury, David A. Hurrell, Siwen Yong, Jiangfeng Wu, Daniel C. Wagman, Soroush Akbarzadeh, Robert Scritzky, Subramanian Ramalingam
  • Patent number: 11682828
    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: June 20, 2023
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Patent number: 11677160
    Abstract: An electronic device may be provided with a cover layer and a phased antenna array mounted against the cover layer. Each antenna in the array may include a first patch element that is directly fed using first and second feeds and a second patch element that is directly fed using third and fourth feeds. A slot element may be formed in the first patch element. The first patch element may radiate in a first frequency band through the cover layer. The slot element may radiate in a second frequency band that is higher than the first frequency band through the cover layer. The second patch element may indirectly feed the slot element. Locating the radiating elements for each frequency band in the same plane may allow the antenna to radiate through the cover layer in both frequency bands with satisfactory antenna efficiency.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: June 13, 2023
    Assignee: Apple Inc.
    Inventors: Bilgehan Avser, Harish Rajagopalan, Simone Paulotto, Jennifer M. Edwards, Hao Xu, Rodney A. Gomez Angulo, Matthew A. Mow, Mattia Pascolini
  • Patent number: 11641061
    Abstract: An electronic device may include a millimeter wave antenna having a ground plane, resonating element, feed, and parasitic element. The resonating element may include first, second, and third layer of traces that are shorted together. The second traces may be interposed between the first and third traces and the third traces may be interposed between the second traces and the parasitic. The third traces may have a width that is less than the widths of the second and third traces. The third traces and the parasitic may define a constrained volume having an associated cavity resonance that lies outside of a frequency band of interest. If desired, the resonating element may include a single layer of conductive traces having a grid of openings that disrupt impedance in a transverse direction, thereby mitigating the trapping of energy within the frequency band of interest between the resonating element and the parasitic.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: May 2, 2023
    Assignee: Apple Inc.
    Inventors: Simone Paulotto, Basim H. Noori, Matthew A. Mow
  • Patent number: 11552402
    Abstract: An electronic device may be provided with a sidewall and an antenna module pressed against an interior surface of the sidewall. The module may include a phased antenna array. The sidewall may have apertures aligned with respective antenna in the array. The antennas may convey radio-frequency signals in first and second frequency bands greater than 10 GHz and with vertical and horizontal polarizations. Each aperture may include a corresponding cavity with non-linear cavity walls. The antennas may excite resonant cavity modes of the cavities that cause the cavities to radiate the radio-frequency signals as waveguide radiators. At the same time, the apertures may form a smooth impedance transition between the antennas and free space for the radio-frequency signals of both the horizontal and vertical polarizations.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: January 10, 2023
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Bhaskara R. Rupakula, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Patent number: 11552405
    Abstract: A communication terminal may include an array of antenna modules. Each module may include an array of radiators on a substrate and a radio-frequency lens overlapping the array. The lens may include a tapered base on the substrate and a curved portion on the tapered base. The tapered base and curved portions may be rotationally symmetric about a central axis of the lens. The curved portion may be hemispherical. The tapered base portion may be conical and may have a first radius at the hemispherical portion and a second radius that is less than the first radius at the substrate. At least one radiator in the array may be located beyond the first radius and within the second radius from the central axis. The lens may be formed from lattice having interleaved layers of dielectric segments separated by gaps to reduce the overall weight of the module.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: January 10, 2023
    Assignee: Apple Inc.
    Inventors: Adam H. Bily, Carlo di Nallo, Matthew N. Ettus, Michael D. Trela, Simone Paulotto
  • Patent number: 11528076
    Abstract: A communication terminal may include control circuitry and an array of antenna modules. Each module may include radiators on a substrate, a lens overlapping the radiators, a transceiver chain, and switching circuitry. The control circuitry may control the switching circuitry to activate a set of one or more radiators in a given module. The control circuitry may control the transceiver chain in that module to convey signals at a selected phase using each of the active radiators. Each of the active radiators may convey the signals over signal beams oriented in different directions by the lens. The control circuitry may adjust the active radiators in each module and may adjust the selected phase for each of the modules to generate a combined signal beam in a desired direction. The combined signal beam may be generated using signals from the active radiators in two or more modules across the array.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: December 13, 2022
    Assignee: Apple Inc.
    Inventors: Adam H. Bily, Carlo di Nallo, Matthew N. Ettus, Michael D. Trela, Simone Paulotto
  • Publication number: 20220255212
    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 11, 2022
    Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Patent number: 11340329
    Abstract: An electronic device may be provided with control circuitry and wireless circuitry. The wireless circuitry may include a phased antenna array and a radio-frequency integrated circuit having transmit and receive ports. The array may include a first set of stacked patch antennas coupled to the transmit ports and a second set of stacked patch antennas coupled to the receive ports. The integrated circuit may transmit ranging signals at millimeter wave frequencies using the transmit ports and the first set of antennas. The integrated circuit may receive a reflected version of the transmitted ranging signals that has been reflected off of an external object using the receive ports and the second set of antennas. The control circuitry may identify a distance between the electronic device and the external object based on the transmitted and received signals.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 24, 2022
    Assignee: Apple Inc.
    Inventors: Simone Paulotto, Carlo Di Nallo
  • Patent number: 11335992
    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: May 17, 2022
    Assignee: Apple Inc.
    Inventors: Jennifer M. Edwards, Siwen Yong, Jiangfeng Wu, Harish Rajagopalan, Bilgehan Avser, Simone Paulotto, Mattia Pascolini
  • Publication number: 20220109464
    Abstract: An electronic device may include a transmission line path having a signal conductor embedded in a substrate. A contact pad may be patterned on a surface of the substrate. A radio-frequency component may be mounted to the contact pad using solder. Multi-layer impedance matching structures may couple the signal conductor to the contact pad. The matching structures may include a set of via pads and a set of conductive vias coupled in series between the signal conductor and the contact pad. The area of the via pads may vary across the set of via pads and/or the aspect ratio of the conductive vias may vary across the set of conductive vias. The matching structures may perform impedance matching between the signal conductor and the radio-frequency component at frequencies greater than 10 GHz while occupying a minimal amount of space in the device.
    Type: Application
    Filed: April 6, 2021
    Publication date: April 7, 2022
    Inventors: Bilgehan Avser, Harish Rajagopalan, Jennifer M. Edwards, Simone Paulotto, Siwen Yong
  • Patent number: 11289802
    Abstract: An electronic device may be provided with a transceiver, a substrate, and antennas mounted to the substrate. The transceiver and antennas may convey signals between 10 GHz and 300 GHz. A radio-frequency connector may be mounted to the substrate. A coaxial cable may couple the transceiver to the connector. A stripline in the substrate may couple the connector to the antennas. Impedance matching structures may be embedded in the substrate for matching an impedance of the stripline to an impedance of the coaxial cable. The impedance matching structures may include a fence of conductive vias, landing pads, and a volume of the dielectric substrate defined by the fence of conductive vias and the landing pads. The impedance matching structures may be configured to perform impedance matching over a relatively wide bandwidth that includes the frequency band of operation for the antennas.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 29, 2022
    Assignee: Apple Inc.
    Inventors: Simone Paulotto, Jennifer M. Edwards, Harish Rajagopalan, Bilgehan Avser