Patents by Inventor Sina FAKHAR

Sina FAKHAR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911087
    Abstract: Described herein are embodiments of a switching network for integrating electrophysiology components into an electrophysiology system. These electrophysiology components may include electrophysiology recorder, three-dimensional mapping systems, radio frequency generators, and stimulators. The switching network provides switchable connections, which allow the electrophysiology system to be reconfigured to perform different electrophysiology procedures, such as heart signal recording and mapping, cardiac ablation, or cardiac pacing. A recorder may provide control signals to the switching network to change connections between electrophysiology equipment and a catheter in a patient's heart. The electrophysiology system may control generation of biphasic pulses for use in cardiac pacing. The electrophysiology system may reconfigure the effective size the tip electrode of a split tip catheter.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: February 27, 2024
    Assignee: BioSig Technologies, Inc.
    Inventors: Thomas G. Foxall, Budimir S. Drakulic, Sina Fakhar, Branislav Vlajinic
  • Patent number: 11896379
    Abstract: Systems, methods, and computer program product embodiments are disclosed for displaying cardiac signals based on a signal pattern. An embodiment operates by accessing an input cardiac signal. The embodiment matches a portion of the input cardiac signal to a known signal pattern. The embodiment then displays an indication of a degree of the match.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 13, 2024
    Assignees: BioSig Technologies, Inc., Mayo Foundation for Medical Education and Research
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic, Samuel J. Asirvatham
  • Patent number: 11843407
    Abstract: Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: December 12, 2023
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Patent number: 11737699
    Abstract: Systems, methods, and computer program product embodiments are disclosed for performing electrophysiology (EP) signal processing. An embodiment includes an electrocardiogram (ECG) circuit board configured to process an ECG signal. The embodiment further includes a plurality of intracardiac (IC) circuit boards, each configured to process a corresponding IC signal. The ECG circuit board and the plurality of IC circuit boards share substantially a same circuit configuration and components. The ECG circuit board further processes the ECG signal using substantially a same path as each IC circuit board uses to process its corresponding IC signal.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: August 29, 2023
    Assignees: BioSig Technologies, Inc., Mayo Foundation for Medical Education and Research
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic, Samuel J. Asirvatham
  • Publication number: 20230240582
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Application
    Filed: February 28, 2023
    Publication date: August 3, 2023
    Applicant: BioSig Technologies, Inc.
    Inventors: Budimir S. DRAKULIC, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Publication number: 20230216529
    Abstract: Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
    Type: Application
    Filed: December 19, 2022
    Publication date: July 6, 2023
    Applicant: BIOSIG Technologies, Inc.
    Inventors: Budimir S. DRAKULIC, Sina FAKHAR, Thomas G. FOXALL, Branislav VLAJINIC
  • Patent number: 11617529
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: April 4, 2023
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Patent number: 11617530
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: April 4, 2023
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Patent number: 11569853
    Abstract: Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: January 31, 2023
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Publication number: 20220263528
    Abstract: Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 18, 2022
    Applicant: BIOSIG Technologies, Inc.
    Inventors: Budimir S. DRAKULIC, Sina FAKHAR, Thomas G. FOXALL, Branislav VLAJINIC
  • Publication number: 20220249006
    Abstract: Systems, methods, and computer program product embodiments are disclosed for performing electrophysiology (EP) signal processing. An embodiment includes an electrocardiogram (ECG) circuit board configured to process an ECG signal. The embodiment further includes a plurality of intracardiac (IC) circuit boards, each configured to process a corresponding IC signal. The ECG circuit board and the plurality of IC circuit boards share substantially a same circuit configuration and components. The ECG circuit board further processes the ECG signal using substantially a same path as each IC circuit board uses to process its corresponding IC signal.
    Type: Application
    Filed: April 13, 2022
    Publication date: August 11, 2022
    Applicants: BioSig Technologies, Inc., Mayo Foundation for Medical Education and Research
    Inventors: Budimir S. DRAKULIC, Sina FAKHAR, Thomas G. FOXALL, Branislav VLAJINIC, Samuel J. ASIRVATHAM
  • Publication number: 20220240829
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Application
    Filed: January 25, 2022
    Publication date: August 4, 2022
    Applicant: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Patent number: 11324431
    Abstract: Systems, methods, and computer program product embodiments are disclosed for performing electrophysiology (EP) signal processing. An embodiment includes an electrocardiogram (ECG) circuit board configured to process an ECG signal. The embodiment further includes a plurality of intracardiac (IC) circuit boards, each configured to process a corresponding IC signal. The ECG circuit board and the plurality of IC circuit boards share substantially a same circuit configuration and components. The ECG circuit board further processes the ECG signal using substantially a same path as each IC circuit board uses to process its corresponding IC signal.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 10, 2022
    Assignees: BioSig Technologies, Inc., Mayo Foundation for Medical Education and Research
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic, Samuel J. Asirvatham
  • Publication number: 20220110574
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Application
    Filed: September 16, 2021
    Publication date: April 14, 2022
    Applicant: BioSig Technologies, Inc.
    Inventors: Budimir S. DRAKULIC, Sina FAKHAR, Thomas G. FOXALL, Branislav VLAJINIC
  • Patent number: 11265031
    Abstract: Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: March 1, 2022
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Publication number: 20220039856
    Abstract: Described herein are embodiments of a switching network for integrating electrophysiology components into an electrophysiology system. These electrophysiology components may include electrophysiology recorder, three-dimensional mapping systems, radio frequency generators, and stimulators. The switching network provides switchable connections, which allow the electrophysiology system to be reconfigured to perform different electrophysiology procedures, such as heart signal recording and mapping, cardiac ablation, or cardiac pacing. A recorder may provide control signals to the switching network to change connections between electrophysiology equipment and a catheter in a patient's heart. The electrophysiology system may control generation of biphasic pulses for use in cardiac pacing. The electrophysiology system may reconfigure the effective size the tip electrode of a split tip catheter.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Inventors: Thomas G. FOXALL, Budimir S. DRAKULIC, Sina FAKHAR, Branislav VLAJINIC
  • Patent number: 11229391
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 25, 2022
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Patent number: 11123003
    Abstract: Apparatus and methods remove a voltage offset from an electrical signal, specifically a biomedical signal. A signal is received at a first operational amplifier and is amplified by a gain. An amplitude of the signal is monitored, by a first pair of diode stages coupled to an output of the first operational amplifier, for the voltage offset. The amplitude of the signal is then attenuated by the first pair of diode stages and a plurality of timing banks. The attenuating includes limiting charging, by the first pair of diode stages, of the plurality of timing banks and setting a time constant based on the charging. The attenuating removes the voltage offset persisting at a threshold for a duration of at least the time constant. Saturation of the signal is limited to a saturation recovery time while the saturated signal is gradually pulled into monitoring range over the saturation recovery time.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: September 21, 2021
    Assignee: BioSig Technologies, Inc.
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic
  • Patent number: 11045133
    Abstract: Systems, methods, and computer program product embodiments are disclosed for filtering noise from an input signal. An embodiment accesses the input signal having a first harmonic frequency and having the noise. The embodiment determines a quiet period in the input signal. The embodiment stores samples of the noise of the input signal in a buffer during the quiet period. The embodiment subtracts the samples from a single cycle of the noise in the buffer from the input signal to create a filtered signal. The embodiment then repeats the determining, storing, and subtracting to refine the filtered signal.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: June 29, 2021
    Assignees: BioSig Technologies, Inc., Mayo Foundation for Medical Education and Research
    Inventors: Budimir S. Drakulic, Sina Fakhar, Thomas G. Foxall, Branislav Vlajinic, Samuel J. Asirvatham
  • Publication number: 20210143851
    Abstract: Systems, methods, and computer program product embodiments are disclosed for removing any fixed frequency interfering signal from an input signal without introducing artifacts that are not part of the original signal of interest. An embodiment operates by using a virtual buffer with a length that matches a length of one cycle of an interfering signal. The embodiment extracts the interfering signal into the virtual buffer. For a sample in the next cycle of the interfering signal that corresponds to a virtual memory location for the virtual buffer, the embodiment can update one or more physical memory locations of the virtual buffer that are in the vicinity of the virtual memory location. This use of virtual buffer can remove any interfering signal without creating the artifacts associated with conventional notch filters.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 13, 2021
    Applicant: BIOSIG Technologies, Inc.
    Inventors: Budimir S. DRAKULIC, Sina FAKHAR, Thomas G. FOXALL, Branislav VLAJINIC