Patents by Inventor Siu Lung Chan

Siu Lung Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923341
    Abstract: An electronic device with embedded access to a high-bandwidth, high-capacity fast-access memory includes (a) a memory circuit fabricated on a first semiconductor die, wherein the memory circuit includes numerous modular memory units, each modular memory unit having (i) a three-dimensional array of storage transistors, and (ii) a group of conductors exposed to a surface of the first semiconductor die, the group of conductors being configured for communicating control, address and data signals associated the memory unit; and (b) a logic circuit fabricated on a second semiconductor die, wherein the logic circuit also includes conductors each exposed at a surface of the second semiconductor die, wherein the first and second semiconductor dies are wafer-bonded, such that the conductors exposed at the surface of the first semiconductor die are each electrically connected to a corresponding one of the conductors exposed to the surface of the second semiconductor die.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: March 5, 2024
    Assignee: SUNRISE MEMORY CORPORATION
    Inventors: Khandker Nazrul Quader, Robert Norman, Frank Sai-keung Lee, Christopher J. Petti, Scott Brad Herner, Siu Lung Chan, Sayeef Salahuddin, Mehrdad Mofidi, Eli Harari
  • Publication number: 20230260969
    Abstract: An electronic device with embedded access to a high-bandwidth, high-capacity fast-access memory includes (a) a memory circuit fabricated on a first semiconductor die, wherein the memory circuit includes numerous modular memory units, each modular memory unit having (i) a three-dimensional array of storage transistors, and (ii) a group of conductors exposed to a surface of the first semiconductor die, the group of conductors being configured for communicating control, address and data signals associated the memory unit; and (b) a logic circuit fabricated on a second semiconductor die, wherein the logic circuit also includes conductors each exposed at a surface of the second semiconductor die, wherein the first and second semiconductor dies are wafer-bonded, such that the conductors exposed at the surface of the first semiconductor die are each electrically connected to a corresponding one of the conductors exposed to the surface of the second semiconductor die.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Khandker Nazrul Quader, Robert Norman, Frank Sai-keung Lee, Christopher J. Petti, Scott Brad Herner, Siu Lung Chan, Sayeef Salahuddin, Mehrdad Mofidi, Eli Harari
  • Patent number: 11670620
    Abstract: An electronic device with embedded access to a high-bandwidth, high-capacity fast-access memory includes (a) a memory circuit fabricated on a first semiconductor die, wherein the memory circuit includes numerous modular memory units, each modular memory unit having (i) a three-dimensional array of storage transistors, and (ii) a group of conductors exposed to a surface of the first semiconductor die, the group of conductors being configured for communicating control, address and data signals associated the memory unit; and (b) a logic circuit fabricated on a second semiconductor die, wherein the logic circuit also includes conductors each exposed at a surface of the second semiconductor die, wherein the first and second semiconductor dies are wafer-bonded, such that the conductors exposed at the surface of the first semiconductor die are each electrically connected to a corresponding one of the conductors exposed to the surface of the second semiconductor die.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: June 6, 2023
    Assignee: SUNRISE MEMORY CORPORATION
    Inventors: Khandker Nazrul Quader, Robert Norman, Frank Sai-keung Lee, Christopher J. Petti, Scott Brad Herner, Siu Lung Chan, Sayeef Salahuddin, Mehrdad Mofidi, Eli Harari
  • Publication number: 20210398949
    Abstract: An electronic device with embedded access to a high-bandwidth, high-capacity fast-access memory includes (a) a memory circuit fabricated on a first semiconductor die, wherein the memory circuit includes numerous modular memory units, each modular memory unit having (i) a three-dimensional array of storage transistors, and (ii) a group of conductors exposed to a surface of the first semiconductor die, the group of conductors being configured for communicating control, address and data signals associated the memory unit; and (b) a logic circuit fabricated on a second semiconductor die, wherein the logic circuit also includes conductors each exposed at a surface of the second semiconductor die, wherein the first and second semiconductor dies are wafer-bonded, such that the conductors exposed at the surface of the first semiconductor die are each electrically connected to a corresponding one of the conductors exposed to the surface of the second semiconductor die.
    Type: Application
    Filed: September 3, 2021
    Publication date: December 23, 2021
    Inventors: Khandker Nazrul Quader, Robert Norman, Frank Sai-keung Lee, Christopher J. Petti, Scott Brad Herner, Siu Lung Chan, Sayeef Salahuddin, Mehrdad Mofidi, Eli Harari
  • Publication number: 20200243486
    Abstract: An electronic device with embedded access to a high-bandwidth, high-capacity fast-access memory includes (a) a memory circuit fabricated on a first semiconductor die, wherein the memory circuit includes numerous modular memory units, each modular memory unit having (i) a three-dimensional array of storage transistors, and (ii) a group of conductors exposed to a surface of the first semiconductor die, the group of conductors being configured for communicating control, address and data signals associated the memory unit; and (b) a logic circuit fabricated on a second semiconductor die, wherein the logic circuit also includes conductors each exposed at a surface of the second semiconductor die, wherein the first and second semiconductor dies are wafer-bonded, such that the conductors exposed at the surface of the first semiconductor die are each electrically connected to a corresponding one of the conductors exposed to the surface of the second semiconductor die.
    Type: Application
    Filed: January 29, 2020
    Publication date: July 30, 2020
    Applicant: Sunrise Memory Corporation
    Inventors: Khandker Nazrul Quader, Robert Norman, Frank Sai-keung Lee, Christopher J. Petti, Scott Brad Herner, Siu Lung Chan, Sayeef Salahuddin, Mehrdad Mofidi, Eli Harari
  • Patent number: 9576673
    Abstract: Disclosed herein are techniques for sensing multiple reference levels in non-volatile storage elements without changing the voltage on the selected word line. One aspect includes determining a first condition of a selected non-volatile storage element with respect to a first reference level based on whether a sensing transistor conducts in response to a sense voltage on a sense node. Then, a voltage on the source terminal of the sensing transistor is modified after determining the first condition with respect to the first reference level. A second condition of the selected non-volatile storage element is then determined with respect to a second reference level based on whether the sensing transistor conducts in response to the sense voltage on the sense node. This allows two different reference levels to be efficiently sensed. Dynamic power is saved due low capacitance of the sensing transistor relative to the sense node.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: February 21, 2017
    Assignee: SanDisk Technologies LLC
    Inventors: Xiaowei Jiang, Chang Siau, Siu Lung Chan
  • Publication number: 20160099070
    Abstract: Disclosed herein are techniques for sensing multiple reference levels in non-volatile storage elements without changing the voltage on the selected word line. One aspect includes determining a first condition of a selected non-volatile storage element with respect to a first reference level based on whether a sensing transistor conducts in response to a sense voltage on a sense node. Then, a voltage on the source terminal of the sensing transistor is modified after determining the first condition with respect to the first reference level. A second condition of the selected non-volatile storage element is then determined with respect to a second reference level based on whether the sensing transistor conducts in response to the sense voltage on the sense node. This allows two different reference levels to be efficiently sensed. Dynamic power is saved due low capacitance of the sensing transistor relative to the sense node.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 7, 2016
    Inventors: Xiaowei Jiang, Chang Siau, Siu Lung Chan
  • Patent number: 9047954
    Abstract: Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria. The sensing criteria may comprise a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a die or memory plane. Prior to performing a read or verify operation on a group of memory cells, a bit line read voltage used during sensing of the group of memory cells may be determined based on the plurality of bit line read voltages and a zone associated with the group of memory cells.
    Type: Grant
    Filed: April 19, 2014
    Date of Patent: June 2, 2015
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Teruhiko Kamei, Seungpil Lee, Siu Lung Chan, Kwang Ho Kim, Man Lung Mui
  • Patent number: 8908432
    Abstract: Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria such as a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a memory plane. Within each zone, different bit line read voltages may be applied to different bit line groupings in order to compensate for systematic variations in bit line resistance between neighboring bit lines due to the use of multiple patterning lithography techniques such as spacer-based double patterning.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 9, 2014
    Assignee: Sandisk Technologies, Inc.
    Inventors: Teruhiko Kamei, Seungpil Lee, Siu Lung Chan, Kwang Ho Kim, Man Lung Mui
  • Patent number: 8902659
    Abstract: Methods for operating a non-volatile storage system utilizing a shared-bit-line NAND architecture are described. A shared-bit-line NAND architecture includes one or more pairs of NAND strings, wherein each pair of the one or more pairs of NAND strings shares a common bit line. In some embodiments, a pair of NAND strings includes an odd NAND string adjacent to an even NAND string. Prior to programming a memory cell associated with the even NAND string, an odd channel associated with the odd NAND string (i.e., the NAND string of the pair that is not selected for programming) is precharged to a bit line inhibit voltage, floated, and then boosted to a second voltage greater than the bit line inhibit voltage as an even channel associated with the even NAND string is precharged. Subsequently, the odd channel may be boosted (e.g., via self-boosting) prior to programming the memory cell.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: December 2, 2014
    Assignee: Sandisk Technologies, Inc.
    Inventor: Siu Lung Chan
  • Patent number: 8873303
    Abstract: A non-volatile memory device capable of reading and writing a large number of memory cells with multiple read/write circuits in parallel has an architecture that reduces redundancy in the multiple read/write circuits to a minimum. The multiple read/write circuits are organized into a bank of similar stacks of components. Redundant circuits such as a processor for processing data among stacks each associated with multiple memory cells are factored out. The processor is implemented with an input logic, a latch and an output logic. The input logic can transform the data received from either the sense amplifier or the data latches. The output logic further processes the transformed data to send to either the sense amplifier or the data latches or to a controller. This provides an infrastructure with maximum versatility and a minimum of components for sophisticated processing of the data sensed and the data to be input or output.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: October 28, 2014
    Assignee: Sandisk Technologies, Inc.
    Inventors: Raul-Adrian Cernea, Yan Li, Shahzad Khalid, Siu Lung Chan
  • Publication number: 20140226405
    Abstract: Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria. The sensing criteria may comprise a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a die or memory plane. Prior to performing a read or verify operation on a group of memory cells, a bit line read voltage used during sensing of the group of memory cells may be determined based on the plurality of bit line read voltages and a zone associated with the group of memory cells.
    Type: Application
    Filed: April 19, 2014
    Publication date: August 14, 2014
    Applicant: SANDISK TECHNOLOGIES, INC.
    Inventors: Teruhiko Kamei, Seungpil Lee, Siu Lung Chan, Kwang Ho Kim, Man Lung Mui
  • Patent number: 8743618
    Abstract: Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria. The sensing criteria may comprise a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a die or memory plane. Prior to performing a read or verify operation on a group of memory cells, a bit line read voltage used during sensing of the group of memory cells may be determined based on the plurality of bit line read voltages and a zone associated with the group of memory cells.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 3, 2014
    Assignee: Sandisk Technologies Inc.
    Inventors: Teruhiko Kamei, Seungpil Lee, Siu Lung Chan, Kwang Ho Kim, Man Lung Mui
  • Publication number: 20140133230
    Abstract: Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria such as a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a memory plane. Within each zone, different bit line read voltages may be applied to different bit line groupings in order to compensate for systematic variations in bit line resistance between neighboring bit lines due to the use of multiple patterning lithography techniques such as spacer-based double patterning.
    Type: Application
    Filed: January 31, 2013
    Publication date: May 15, 2014
    Applicant: SANDISK TECHNOLOGIES, INC.
    Inventors: Teruhiko Kamei, Seungpil Lee, Siu Lung Chan, Kwang Ho Kim, Man Lung Mui
  • Publication number: 20140133229
    Abstract: Methods for compensating for variations in bit line resistance during sensing of memory cells are described. The variations in bit line resistance may occur die-to-die or plane-to-plane on the same die. In some embodiments, for each die or memory plane on a die, a plurality of bit line read voltages associated with a plurality of zones may be determined based on sensing criteria. The sensing criteria may comprise a number of fail bits. Each zone of the plurality of zones may be associated with a memory array region within a die or memory plane. Prior to performing a read or verify operation on a group of memory cells, a bit line read voltage used during sensing of the group of memory cells may be determined based on the plurality of bit line read voltages and a zone associated with the group of memory cells.
    Type: Application
    Filed: January 31, 2013
    Publication date: May 15, 2014
    Applicant: SANDISK TECHNOLOGIES, INC.
    Inventors: Teruhiko Kamei, Seungpil Lee, Siu Lung Chan, Kwang Ho Kim, Man Lung Mui
  • Patent number: 8705293
    Abstract: A compact and versatile sense amp is presented. Among its other features this sense amp arrangement provides a way to pre-charge bit lines while doing data scanning. Another feature is that the sense amp circuit can provide a way to set three different bit line levels used in the quick pass write (QPW) technique using dynamic latch, where quick pass write is a technique where cells along a given word line selected for programming can be enabled, inhibited, or partially inhibited for programming. Also, it can provide a convenient way to measure the cell current.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 22, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Min She, Yan Li, Kwang-Ho Kim, Siu Lung Chan
  • Patent number: 8630120
    Abstract: A compact and versatile sense amp is presented. Among its other features this sense amp arrangement provides a way to pre-charge bit lines while doing data scanning. Another feature is that the sense amp circuit can provide a way to set three different bit line levels used in the quick pass write (QPW) technique using dynamic latch, where quick pass write is a technique where cells along a given word line selected for programming can be enabled, inhibited, or partially inhibited for programming. Also, it can provide a convenient way to measure the cell current.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: January 14, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Min She, Yan Li, Kwang-Ho Kim, Siu Lung Chan
  • Publication number: 20130250687
    Abstract: Methods for operating a non-volatile storage system utilizing a shared-bit-line NAND architecture are described. A shared-bit-line NAND architecture includes one or more pairs of NAND strings, wherein each pair of the one or more pairs of NAND strings shares a common bit line. In some embodiments, a pair of NAND strings includes an odd NAND string adjacent to an even NAND string. Prior to programming a memory cell associated with the even NAND string, an odd channel associated with the odd NAND string (i.e., the NAND string of the pair that is not selected for programming) is precharged to a bit line inhibit voltage, floated, and then boosted to a second voltage greater than the bit line inhibit voltage as an even channel associated with the even NAND string is precharged. Subsequently, the odd channel may be boosted (e.g., via self-boosting) prior to programming the memory cell.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Inventor: Siu Lung Chan
  • Patent number: 8542529
    Abstract: A non-volatile memory device capable of reading and writing a large number of memory cells with multiple read/write circuits in parallel has features to reduce power consumption during read, and program/verify operations. A read or program verify operation includes one or more sensing cycles relative to one or more demarcation threshold voltages to determine a memory state. In one aspect, selective memory cells among the group being sensed in parallel have their conduction currents turned off when they are determined to be in a state not relevant to the current sensing cycle. In another aspect, a power-consuming period is minimized by preemptively starting any operations that would prolong the period. In a program/verify operation cells not to be programmed have their bit lines charged up in the program phase. Power is saved when a set of these bit lines avoids re-charging at every passing of a program phase.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 24, 2013
    Assignee: SanDisk Corporation
    Inventors: Yan Li, Seungpil Lee, Siu Lung Chan
  • Publication number: 20130100740
    Abstract: A compact and versatile sense amp is presented. Among its other features this sense amp arrangement provides a way to pre-charge bit lines while doing data scanning. Another feature is that the sense amp circuit can provide a way to set three different bit line levels used in the quick pass write (QPW) technique using dynamic latch, where quick pass write is a technique where cells along a given word line selected for programming can be enabled, inhibited, or partially inhibited for programming. Also, it can provide a convenient way to measure the cell current.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Inventors: Min She, Yan Li, Kwang-Ho Kim, Siu Lung Chan