Patents by Inventor Sivapackia Ganapathiappan

Sivapackia Ganapathiappan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240363392
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a color conversion layer over each of a plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array.
    Type: Application
    Filed: July 8, 2024
    Publication date: October 31, 2024
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240319588
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, a method for preparing an imprinted surface is provided and includes disposing an imprint composition on a substrate, contacting the imprint composition with a stamp having a pattern, converting the imprint composition to an imprint material having the pattern, and removing the stamp from the imprint material. The imprint composition may contain one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates.
    Type: Application
    Filed: May 30, 2024
    Publication date: September 26, 2024
    Inventors: Amita JOSHI, Ian Matthew MCMACKIN, Rami HOURANI, Yingdong LUO, Sivapackia GANAPATHIAPPAN, Ludovic GODET
  • Patent number: 12044963
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, an imprint composition contains one or more types of nanoparticles, one or more surface ligands, one or more solvents, one or more additives, and one or more acrylates.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: July 23, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amita Joshi, Ian Matthew McMackin, Rami Hourani, Yingdong Luo, Sivapackia Ganapathiappan, Ludovic Godet
  • Publication number: 20240234655
    Abstract: Embodiments of the present disclosure generally relate to LED pixels and methods of fabricating LED pixels. A device includes a backplane, at least three LEDs disposed on the backplane, subpixel isolation (SI) structures disposed defining wells of at least three subpixels, a reflection material is disposed on sidewalls and a top surface of the SI structures, at least three of the subpixels have a color conversion material disposed in the wells, an encapsulation layer disposed over the subpixel isolation structures and the subpixels, a light filter layer disposed over the encapsulation layer and micro-lenses disposed over the light filter layer and over each of the wells of the subpixels.
    Type: Application
    Filed: October 20, 2023
    Publication date: July 11, 2024
    Inventors: Zhiyong LI, Sivapackia GANAPATHIAPPAN, Mingwei ZHU, Nag B. PATIBANDLA, Hou T. NG, Lisong XU, Ding KAI, Kulandaivelu SIVANANDAN
  • Patent number: 12033887
    Abstract: A multi-color display includes a backplane having backplane circuitry, an array of micro-LEDs electrically integrated with backplane circuitry of the backplane, a color conversion layer over each of a plurality of light emitting diodes, and a plurality of isolation walls separating adjacent micro-LEDs of the array.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: July 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240194836
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Application
    Filed: February 16, 2024
    Publication date: June 13, 2024
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240194837
    Abstract: A display includes a light emitting diode and a color conversion layer that includes a polymer matrix, a blue photoluminescent material, and a components of a photoinitiator that initiated polymerization to form the polymer matrix. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Application
    Filed: February 23, 2024
    Publication date: June 13, 2024
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Patent number: 12006442
    Abstract: A system, formulation, and method for additive manufacturing of a polishing layer of a polishing pad. The formulation includes a urethane acrylate oligomer based on a difunctional polyol or difunctional polythiol. The techniques includes selecting the difunctional polyol or the difunctional polythiol to affect a property of the polishing layer. The formulation also includes a monomer and a photoinitiator. The viscosity of the formulation is applicable for 3D printing of the polishing layer.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: June 11, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Atul Bhaskar Chaudhari, Sivapackia Ganapathiappan, Srobona Sen
  • Publication number: 20240186458
    Abstract: Micro-LED structures include an LED epilayer that may be formed before the micro-LED structure is coupled to a backplane substrate. In order to prevent light leakage and maximize light output, the sidewalls and other surfaces of the LED epilayer may be coated with a reflective coating. For example, the reflective coating may include a metal layer that is electrically insulated between dielectric layers from the micro-LED electrodes. The reflective coating may also be formed using multiple layers in a distributed Bragg reflector configuration. This reflective coating may be formed during the LED fabrication process before the micro-LED structure is coupled to the backplane. The pixel isolation structures on the backplane may also include a reflective coating that is applied above the LED epilayers.
    Type: Application
    Filed: January 15, 2024
    Publication date: June 6, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Kai Ding, Lisong Xu, Mingwei Zhu, Zhiyong Li, Hou T. Ng, Sivapackia Ganapathiappan, Nag Patibandla
  • Patent number: 11980992
    Abstract: Embodiments described herein relate to integrated abrasive (IA) polishing pads, and methods of manufacturing IA polishing pads using, at least in part, surface functionalized abrasive particles in an additive manufacturing process, such as a 3D inkjet printing process. In one embodiment, a method of forming a polishing article includes dispensing a first plurality of droplets of a first precursor, curing the first plurality of droplets to form a first layer comprising a portion of a sub-polishing element, dispensing a second plurality of droplets of the first precursor and a second precursor onto the first layer, and curing the second plurality of droplets to form a second layer comprising portions of the sub-polishing element and portions of a plurality of polishing elements. Here, the second precursor includes functionalized abrasive particles having a polymerizable group chemically bonded to surfaces thereof.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: May 14, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Ashavani Kumar, Ashwin Chockalingam, Sivapackia Ganapathiappan, Rajeev Bajaj, Boyi Fu, Daniel Redfield, Nag B. Patibandla, Mario Dagio Cornejo, Amritanshu Sinha, Yan Zhao, Ranga Rao Arnepalli, Fred C. Redeker
  • Publication number: 20240154070
    Abstract: Methods of making high-pixel-density LED structures are described. The methods may include forming a backplane substrate and a LED substrate. The backplane substrate and the LED substrate may be bonded together, and the bonded substrates may include an array of LED pixels. Each of the LED pixels may include a group of isolated subpixels. A quantum dot layer may be formed on at least one of the isolated subpixels in each of the LED pixels. The methods may further include repairing at least one defective LED pixel by forming a replacement quantum dot layer on a quantum-dot-layer-free subpixel in the defective LED pixel. The methods may also include forming a UV barrier layer on the array of LED pixels after the repairing of the at least one defective LED pixel.
    Type: Application
    Filed: January 15, 2024
    Publication date: May 9, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Lisong Xu, Mingwei Zhu, Byung Sung Kwak, Hyunsung Bang, Liang Zhao, Hou T. Ng, Sivapackia Ganapathiappan, Nag Patibandla
  • Publication number: 20240145624
    Abstract: A pixel herein includes a color panel, a light emitting diode (LED) panel, and an adhesive layer disposed between the color panel and the LED panel. The color panel includes a transparent layer, a plurality of sub-pixel isolation structures, and a plurality of black matrix structures disposed between the plurality of sub-pixel isolation structures and the transparent layer. The sub-pixel isolation structures define a plurality color conversion wells of plurality of sub-pixels. A color conversion material is disposed in the color conversion well. The plurality of black matrix structures define a plurality of color resist wells of the plurality of sub-pixels. A color resist is disposed in the color resist wells. The LED panel includes a plurality of micro-LEDs disposed on a backplane. The plurality of micro-LEDs correspond to a sub-pixel.
    Type: Application
    Filed: October 24, 2023
    Publication date: May 2, 2024
    Inventors: Peiwen LIU, Hyunsung BANG, Jianfeng SUN, Lisong XU, Zhiyong LI, Sivapackia GANAPATHIAPPAN, Mingwei ZHU, Hou T. NG, Nag. B. PATIBANDLA
  • Publication number: 20240136485
    Abstract: Embodiments of the present disclosure generally relate to LED pixels and methods of fabricating LED pixels. A device includes a backplane, at least three LEDs disposed on the backplane, subpixel isolation (SI) structures disposed defining wells of at least three subpixels, a reflection material is disposed on sidewalls and a top surface of the SI structures, at least three of the subpixels have a color conversion material disposed in the wells, an encapsulation layer disposed over the subpixel isolation structures and the subpixels, a light filter layer disposed over the encapsulation layer and micro-lenses disposed over the light filter layer and over each of the wells of the subpixels.
    Type: Application
    Filed: October 19, 2023
    Publication date: April 25, 2024
    Inventors: Zhiyong LI, Sivapackia GANAPATHIAPPAN, Mingwei ZHU, Nag B. PATIBANDLA, Hou T. NG, Lisong XU, Ding KAI, Kulandaivelu SIVANANDAN
  • Patent number: 11965103
    Abstract: A formulation, system, and method for additive manufacturing of a polishing pad. The formulation includes monomer, dispersant, and nanoparticles. A method of preparing the formulation includes adding a dispersant that is a polyester derivative to monomer, adding metal-oxide nanoparticles to the monomer, and subjecting the monomer having the nanoparticles and dispersant to sonication to disperse the nanoparticles in the monomer.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Sivapackia Ganapathiappan, Ashwin Murugappan Chockalingam, Daihua Zhang, Uma Sridhar, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla, Hou T. Ng, Sudhakar Madhusoodhanan
  • Publication number: 20240123568
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and methods of manufacturing the same. According to one or more embodiments, a method for forming or otherwise preparing a polishing article by sequentially forming a plurality of polymer layers is provided and includes: (a) dispensing a plurality of droplets of a polymer precursor composition onto a surface of a previously formed at least partially cured polymer layer, where the polymer precursor composition contains a first precursor component containing an epoxide group and a photoinitiator component which generates a photoacid when exposed to UV light, (b) at least partially curing the plurality of droplets to form an at least partially cured polymer layer, and (c) repeating (a) and (b).
    Type: Application
    Filed: June 21, 2023
    Publication date: April 18, 2024
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Patent number: 11942576
    Abstract: A photocurable composition includes a blue photoluminescent material, one or more monomers, and a photoinitiator that initiates polymerization of the one or more monomers in response to absorption of the ultraviolet light. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Patent number: 11942456
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid over a display having an array of light emitting diodes (micro-LEDs) disposed below a cover layer. The cover has an outer surface with a plurality of recesses, and the photo-curable fluid fills the recesses. The photo-curable fluid includes a color conversion agent. A plurality of LEDs in the array are activated to illuminate and cure the photo-curable fluid to form a color conversion layer in the recesses over the activated LEDs. This layer will convert light from these LEDs to light of a first color. An uncured remainder of the photo-curable fluid is removed. Then the process is repeated with a different photo-curable fluid having a different color conversion agent and a different plurality of LEDs. This forms a second color conversion layer in different plurality of recesses to convert light from these LEDs to light of a second color.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Publication number: 20240096854
    Abstract: Processing methods are described that include forming a group of LED structures on a substrate layer to form a patterned LED substrate. The methods also include depositing a light absorption material on the pattered LED substrate, where the light absorption material includes at least one photocurable compound and at least one ultraviolet light absorbing material. The methods further include exposing a portion of the light absorption material to patterned light, wherein the patterned light cures the exposed portion of the light absorption material into pixel isolation structures. The methods additionally include depositing an isotropic layer on a top portion and a side portion of the pixel isolation structures, where the LED structures are substantially free of the as-deposited isotropic light reflecting layer.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 21, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Zhiyong Li, Sivapackia Ganapathiappan, Kulandaivelu Sivanandan, Hao Yu, Hou T. Ng, Nag Patibandla, Mingwei Zhu, Lisong Xu, Kai Ding
  • Patent number: 11911870
    Abstract: Embodiments herein generally relate to polishing pads and methods of forming polishing pads. A polishing pad includes a plurality of polishing elements. Each polishing element comprises an individual surface that forms a portion of a polishing surface of the polishing pad and one or more sidewalls extending downwardly from the individual surface to define a plurality of channels disposed between the polishing elements. Each of the polishing elements has a plurality of pore-features formed therein. Each of the polishing elements is formed of a pre-polymer composition and a sacrificial material composition. In some cases, a sample of the cured pre-polymer composition has a glass transition temperature (Tg) of about 80° C. or greater. A storage modulus (E?) of the cured pre-polymer composition at a temperature of 80° C. (E?80) can be about 200 MPa or greater.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Rajeev Bajaj, Yingdong Luo, Aniruddh Jagdish Khanna, You Wang, Daniel Redfield
  • Patent number: 11908979
    Abstract: A photocurable composition includes quantum dots, quantum dot precursor materials, a chelating agent, one or more monomers, and a photoinitiator. The quantum dots are selected to emit radiation in a first wavelength band in the visible light range in response to absorption of radiation in a second wavelength band in the UV or visible light range. The second wavelength band is different than the first wavelength band. The quantum dot precursor materials include metal atoms or metal ions corresponding to metal components present in the quantum dots. The chelating agent is configured to chelate the quantum dot precursor materials. The photoinitiator initiates polymerization of the one or more monomers in response to absorption of radiation in the second wavelength band.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Daihua Zhang, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla