Patents by Inventor Siyuan Chen

Siyuan Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190314783
    Abstract: De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.
    Type: Application
    Filed: May 10, 2019
    Publication date: October 17, 2019
    Inventors: William BANYAI, Bill James PECK, Andres FERNANDEZ, Siyuan CHEN, Pierre INDERMUHLE
  • Patent number: 10384188
    Abstract: De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 20, 2019
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle
  • Publication number: 20190248956
    Abstract: The present disclosure relates to the provision of novel biodegradable amphiphilic peptides and peptide analogues based derivatives comprising hydrophobic chains and their use in the permeabilization of mammalian cells and delivery of agents, for example therapeutic agents, imaging agents and cell preservation agents.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 15, 2019
    Applicant: Imperial Innovations Limited
    Inventors: Rongjun Chen, Siyuan Chen, Liwei Wu
  • Patent number: 10272410
    Abstract: Provided herein are devices for the manufacturing of high-quality oligonucleic acids. Longer nucleic acids, e.g., genes, can be synthesized in parallel using microfluidic assemblies described herein. Devices described herein include silicon plates having a plurality of channels in fluid communication with a plurality of microchannels. The number of microchannels and dimensions of the microchannels provide for rapid exchange of chemical exposure during de novo synthesis of oligonucleic acids.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: April 30, 2019
    Assignee: Twist Bioscience Corporation
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle
  • Publication number: 20190114481
    Abstract: Disclosed are devices, systems, apparatus, methods, products, and other implementations, including a method to detect pattern characteristics in target specimens that includes acquiring sensor data for the target specimens, dividing the acquired sensor data into a plurality of data segments, and generating, by multiple neural networks that each receives the plurality of data segments, multiple respective output matrices, with each data element of the multiple respective output matrices being representative of a probability that corresponding sensor data of a respective one of the plurality of data segments includes a pattern characteristic in the target specimens. The method further includes determining by another neural network, based on the multiple respective output matrices generated by the multiple neural networks, a presence of the pattern characteristic in the target specimens.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 18, 2019
    Inventors: Alan Chad DeChant, Hod Lipson, Rebecca J. Nelson, Michael A. Gore, Tyr Wiesner-Hanks, Ethan Stewart, Jason Yosinski, Siyuan Chen
  • Publication number: 20190055548
    Abstract: Aspects of the present disclosure include methods for double coupling a nucleoside phosphoramidite during synthesis of an oligonucleotide. The method can include coupling a free hydroxyl group of a nucleoside residue with a first sample of a protected nucleoside phosphoramidite via an internucleoside P(III) linkage, followed by exposure to an oxidizing agent prior to a second coupling step with a second sample of the protected nucleoside phosphoramidite, and further exposure to an oxidizing agent. The method finds use in synthesizing an oligonucleotide on a solid phase support, such as a planar surface. The double coupling method can be utilized at one or more nucleotide positions during oligonucleotide synthesis thereby reducing single base deletion rates. Oligonucleotide containing compositions synthesized according to the disclosed methods are also provided.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 21, 2019
    Inventors: Joel Myerson, Siyuan Chen
  • Publication number: 20180355351
    Abstract: Provided herein are methods, systems, and compositions for seamless nucleic acid assembly. Methods, systems, and compositions as provided herein provide for efficient assembly of nucleic acids without primer removal. Methods, systems, and compositions for seamless nucleic acid assembly comprise use of an endonuclease or exonuclease, optionally in conjunction with additional enzymes to assemble nucleic acids or polynucleotides.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Rebecca NUGENT, Siyuan CHEN, Elian LEE, Nathan RAYNARD
  • Publication number: 20180326388
    Abstract: De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 15, 2018
    Inventors: William BANYAI, Bill James PECK, Andres FERNANDEZ, Siyuan CHEN, Pierre INDERMUHLE
  • Publication number: 20180312834
    Abstract: Disclosed herein are methods for the generation of nucleic acid libraries encoding for gRNA sequences. The gRNAs encoded by methods described herein may be single or double gRNA sequences. Methods described provide for the generation of gRNA libraries, as a DNA precursor or as a RNA transcription product, with improved accuracy and uniformity.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 1, 2018
    Inventors: Anthony Cox, Siyuan Chen
  • Publication number: 20180282721
    Abstract: Disclosed herein are methods for the generation of highly accurate nucleic acid libraries encoding for predetermined variants of a nucleic acid sequence. The degree of variation may be complete, resulting in a saturated variant library, or less than complete, resulting in a non-saturating library of variants. The variant nucleic acid libraries described herein may be designed for further processing by transcription or translation. The variant nucleic acid libraries described herein may be designed to generate variant RNA, DNA and/or protein populations. Further provided herein are method for identifying variant species with increased or decreased activities, with applications in regulating biological functions and the design of therapeutics for treatment or reduction of disease.
    Type: Application
    Filed: March 14, 2018
    Publication date: October 4, 2018
    Inventors: Anthony COX, Siyuan CHEN, Charles LEDOGAR, Dominique TOPPANI
  • Publication number: 20180273936
    Abstract: Disclosed herein are methods for the generation of highly accurate nucleic acid libraries encoding for predetermined variants of a nucleic acid sequence. The nucleic acid sequence may encode for all or part of a reference domain of a CAR. The degree of variation may be complete, resulting in a saturated variant library, or less than complete, resulting in a non-saturating library of variants. The variant nucleic acid libraries described herein may be designed for further processing by transcription or translation. The variant nucleic acid libraries described herein may be designed to generate variant RNA, DNA and/or protein populations. Further provided herein are method for identifying variant species with increased or decreased activities, with applications in regulating biological functions and the design of therapeutics for treatment or reduction of a disease, such as cancer.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 27, 2018
    Inventors: Anthony COX, Siyuan CHEN
  • Publication number: 20180264428
    Abstract: De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 20, 2018
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle
  • Patent number: 10072261
    Abstract: Aspects of the present disclosure include methods for double coupling a nucleoside phosphoramidite during synthesis of an oligonucleotide. The method can include coupling a free hydroxyl group of a nucleoside residue with a first sample of a protected nucleoside phosphoramidite via an internucleoside P(III) linkage, followed by exposure to an oxidizing agent prior to a second coupling step with a second sample of the protected nucleoside phosphoramidite, and further exposure to an oxidizing agent. The method finds use in synthesizing an oligonucleotide on a solid phase support, such as a planar surface. The double coupling method can be utilized at one or more nucleotide positions during oligonucleotide synthesis thereby reducing single base deletion rates. Oligonucleotide containing compositions synthesized according to the disclosed methods are also provided.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: September 11, 2018
    Assignee: Agilent Technologies, Inc.
    Inventors: Joel Myerson, Siyuan Chen
  • Publication number: 20180236425
    Abstract: Devices and methods for de novo synthesis of large and highly accurate libraries of oligonucleic acids are provided herein. Devices include structures having a main channel and microchannels, where the microchannels have a high surface area to volume ratio. Devices disclosed herein provide for de novo synthesis of oligonucleic acids having a low error rate.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: William BANYAI, Bill James PECK, Andres FERNANDEZ, Siyuan CHEN, Pierre INDERMUHLE, Eugene P. MARSH
  • Patent number: 10053688
    Abstract: Disclosed herein are methods for the generation of nucleic acid libraries encoding for gRNA sequences. The gRNAs encoded by methods described herein may be single or double gRNA sequences. Methods described provide for the generation of gRNA libraries, as a DNA precursor or as a RNA transcription product, with improved accuracy and uniformity.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 21, 2018
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: Anthony Cox, Siyuan Chen
  • Publication number: 20180171509
    Abstract: Disclosed herein are methods for the generation of highly accurate nucleic acid libraries encoding for predetermined variants of a nucleic acid sequence. The nucleic acid sequence may encode for all or part of a TCR or a TCR-binding antigen. The degree of variation may be complete, resulting in a saturated variant library, or less than complete, resulting in a non-saturating library of variants. The variant nucleic acid libraries described herein may designed for further processing by transcription or translation. The variant nucleic acid libraries described herein may be designed to generate variant RNA, DNA and/or protein populations. Further provided herein are method for identifying variant species with increased or decreased activities, with applications in regulating biological functions and the design of therapeutics for treatment or reduction of a disease, such as cancer.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Anthony COX, Siyuan Chen
  • Patent number: 9981239
    Abstract: Devices and methods for de novo synthesis of large and highly accurate libraries of oligonucleic acids are provided herein. Devices include structures having a main channel and microchannels, where the microchannels have a high surface area to volume ratio. Devices disclosed herein provide for de novo synthesis of oligonucleic acids having a low error rate.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: May 29, 2018
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle, Eugene P. Marsh
  • Publication number: 20180142289
    Abstract: Provided herein are compositions, methods and systems relating to libraries of polynucleotides having preselected stoichiometry with regard to species of polynucleotides such that the libraries allow for predetermined application outcomes, e.g., controlled representation after amplification and uniform enrichment after binding to target sequences. Further provided herein are polynucleotide probes and applications thereof for uniform and accurate next generation sequencing.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Ramsey Ibrahim ZEITOUN, Siyuan CHEN
  • Publication number: 20180051278
    Abstract: Disclosed herein are methods for the generation of nucleic acid libraries encoding for gRNA sequences. The gRNAs encoded by methods described herein may be single or double gRNA sequences. Methods described provide for the generation of gRNA libraries, as a DNA precursor or as a RNA transcription product, with improved accuracy and uniformity.
    Type: Application
    Filed: August 21, 2017
    Publication date: February 22, 2018
    Inventors: Anthony COX, Siyuan CHEN
  • Patent number: 9889423
    Abstract: De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: February 13, 2018
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle