Patents by Inventor Soh UENOYAMA

Soh UENOYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210318466
    Abstract: A method for producing an optical element includes: disposing a joint layer on a substrate; forming a first portion and a second portion in a second surface of the joint layer; and forming a plurality of structural bodies, which are made of a dielectric, on the second surface of the joint layer. The joint layer has a first surface facing the substrate, and the second surface located on a side opposite the first surface. The first portion is covered with a resist layer, and the second portion is exposed from the resist layer. After the dielectric is laminated on at least the second portion, the resist layer is removed to form the plurality of structural bodies on the second surface.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 14, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh UENOYAMA, Hiroki KAMEI, Kazuyoshi HIROSE
  • Publication number: 20210318611
    Abstract: A method for producing an optical element includes: forming a resist layer on a main surface of a substrate; forming a pattern region in the resist layer; forming a groove; forming a dielectric layer covering the pattern region; and forming an optical functional portion. The pattern region is formed in the resist layer. The groove is formed in a portion corresponding to a periphery of the pattern region as viewed in a direction orthogonal to the main surface. A dielectric is deposited to form the dielectric layer. After the dielectric layer covering the pattern region is formed, the resist layer is removed to form the optical functional portion at a position where the pattern region is disposed on the main surface. The optical functional portion is made of the dielectric.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 14, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh UENOYAMA, Hiroki KAMEI, Kazuyoshi HIROSE
  • Publication number: 20210273411
    Abstract: The present embodiment relates to a light-emitting device comprising a reflective metasurface modulating a phase for each of pixels constituting a one- or two-dimensional array. The light-emitting device comprises a surface emitting laser element, a light guide layer, and the metasurface. The metasurface has a light transmissive layer including a dielectric layer, one metal film on one surface thereof, and the other metal film on the other surface thereof. In each of unit regions corresponding to the pixels, the light transmissive layer includes a portion exposed without being covered with the metal film. The width of each unit region and the thickness of the light transmissive layer are smaller than the wavelength of the laser light to the metasurface. The metasurface modulates the phase of the laser light for each unit region. A first light output surface outputs the modulated laser.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 2, 2021
    Applicant: Hamamatsu Photonics K.K.
    Inventors: Soh UENOYAMA, Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Hiroshi TANAKA
  • Publication number: 20210249842
    Abstract: A light emission device of one embodiment reduces zero-order light included in output of an S-iPM laser. The light emission device includes a light emission unit and a phase modulation layer. The phase modulation layer has a base layer and modified refractive index regions each including modified refractive index elements. In each unit constituent region centered on a lattice point of an imaginary square lattice set on the phase modulation layer, the distance from the corresponding lattice point to each of the centers of gravity of the modified refractive index elements is greater than 0.30 times and is not greater than 0.50 times of the lattice spacing. In addition, the distance from the corresponding lattice point to the center of gravity of the modified refractive index elements as a whole is greater than 0 and is not greater than 0.30 times of the lattice spacing.
    Type: Application
    Filed: June 4, 2019
    Publication date: August 12, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuyoshi HIROSE, Takahiro SUGIYAMA, Yuu TAKIGUCHI, Yoshiro NOMOTO, Soh UENOYAMA
  • Publication number: 20210239752
    Abstract: The present disclosure relates to a metalens unit including a metalens having a structure for reducing a thickness. The metalens unit includes a metalens and a holding portion for the metalens. The metalens includes a base portion and a first antenna portion. The first antenna portion is constituted by a plurality of first antennas each having a first refractive index and a first intermediate portion having a second refractive index and positioned between the plurality of first antennas. A first antenna portion is formed such that one-dimensional arrangement constituted by some of end surfaces of the plurality of first antennas includes a pattern in which at least one of a size of the end surface, a shape of the end surface, and an arrangement pitch is changed along a reference line.
    Type: Application
    Filed: April 11, 2019
    Publication date: August 5, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh UENOYAMA, Yuu TAKIGUCHI, Hirotoshi TERADA
  • Publication number: 20210240052
    Abstract: A reflective dynamic metasurface of an embodiment comprises a structure enabling phase modulation in each of pixels constituting at least a one-dimensional array. The metasurface includes: a laminated structure body having a transparent conductive layer and a dielectric layer; a first metal film on one surface of the laminated structure body; a second metal film on the other surface of the laminated structure body; and a drive circuit controlling voltage applied between the first and second metal films. The first and second metal films are arranged to sandwich the pixels. The first metal film is arranged to expose a pair of window regions in one pixel, and the second metal film includes partial metal films defining the shape of each pixel and separated from each other. The drive circuit individually controls the potential of each partial metal film, thereby modulating the phase of the input light for each pixel.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 5, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh UENOYAMA, Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Hiroshi TANAKA
  • Publication number: 20210055456
    Abstract: The present disclosure relates to a metasurface structural body or the like having a structure for achieving desired optical characteristics. The metasurface structural body includes a base member having a first surface and a second surface opposing each other, and a plurality of antennas as a plurality of fine structures arranged along the first surface. The base member has a base portion and an adjacent portion. The antennas each has a first refractive index and an antenna end surface constituting a part of the first surface. The adjacent portion is provided such that a part thereof is positioned between the antennas, the adjacent portion having a second refractive index different from the first refractive index and an adjacent-portion end surface constituting a remaining part of the first surface. The antenna end surfaces and the adjacent-portion end surface form a flat surface as the first surface.
    Type: Application
    Filed: April 11, 2019
    Publication date: February 25, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Soh UENOYAMA, Yuu TAKIGUCHI
  • Publication number: 20200209653
    Abstract: The present embodiment relates to a light-emitting device that enables reduction in attenuation or diffraction effect caused by a semiconductor light-emitting device with respect to modulated light outputted from a spatial light modulator, and the light-emitting device includes the semiconductor light-emitting device that outputs light from a light output surface and the reflection type spatial light modulator that modulates the light. The spatial light modulator includes a light input/output surface having the area larger than the area of a light input surface of the semiconductor light-emitting device, modulates light taken through a region facing the light output surface of the semiconductor light-emitting device in the light input/output surface, and outputs the modulated light from another region of the light input/output surface to a space other than the light input surface of the semiconductor light-emitting device.
    Type: Application
    Filed: June 13, 2018
    Publication date: July 2, 2020
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yuu TAKIGUCHI, Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Takahiro SUGIYAMA, Yoshiro NOMOTO, Soh UENOYAMA
  • Patent number: 10613253
    Abstract: A metasurface is capable of modulating input light including a wavelength in a range of 880 nm to 40 ?m. The metasurface includes: a GaAs substrate including a light input surface into which input light is input and a light output surface facing the light input surface; an interlayer having a lower refractive index than GaAs and disposed on the light output surface side of the GaAs substrate; and a plurality of V-shaped antenna elements disposed on a side of the interlayer which is opposite to the GaAs substrate side and including a first arm and a second arm continuous with one end of the first arm.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 7, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshiro Nomoto, Yoshitaka Kurosaka, Kazuyoshi Hirose, Takahiro Sugiyama, Soh Uenoyama
  • Publication number: 20200106240
    Abstract: The present embodiment relates to a semiconductor light-emitting element or the like including a structure for suppressing deterioration in the quality of an optical image caused by an electrode blocking a part of light outputted from a phase modulation layer. The semiconductor light-emitting element includes a phase modulation layer having a basic layer and a plurality of modified refractive index regions, and the phase modulation layer includes a first region at least partially overlapping the electrode along a lamination direction and a second region other than the first region. Among the plurality of modified refractive index regions, only one or more modified refractive index regions in the second region are disposed so as to contribute to formation of an optical image.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yuu TAKIGUCHI, Kazuyoshi HIROSE, Yoshitaka KUROSAKA, Takahiro SUGIYAMA, Yoshiro NOMOTO, Soh UENOYAMA
  • Publication number: 20190312410
    Abstract: A semiconductor light-emitting module according to the present embodiment includes a plurality of semiconductor light-emitting elements each outputting light of a desired beam projection pattern; and a support substrate holding the plurality of semiconductor light-emitting elements. Each of the plurality of semiconductor light-emitting elements includes a phase modulation layer configured to form a target beam projection pattern in a target beam projection region. The plurality of semiconductor light-emitting elements include first and second semiconductor light-emitting elements that are different in terms of at least any of a beam projection direction, the target beam projection pattern, and a light emission wavelength.
    Type: Application
    Filed: June 5, 2019
    Publication date: October 10, 2019
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro SUGIYAMA, Yuu TAKIGUCHI, Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Yoshiro NOMOTO, Soh UENOYAMA
  • Publication number: 20190288483
    Abstract: The present embodiment relates to a single semiconductor light-emitting element including a plurality of light-emitting portions each of which is capable of generating light of a desired beam projection pattern and a method for manufacturing the semiconductor light-emitting element. In the semiconductor light-emitting element, an active layer and a phase modulation layer are formed on a common substrate layer, and the phase modulation layer includes at least a plurality of phase modulation regions arranged along the common substrate layer. The plurality of phase modulation regions are obtained by separating the phase modulation layer into a plurality of places after manufacturing the phase modulation layer, and as a result, the semiconductor light-emitting element provided with a plurality of light-emitting portions that have been accurately aligned can be obtained through a simple manufacturing process as compared with the related art.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Takahiro SUGIYAMA, Yuu TAKIGUCHI, Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Yoshiro NOMOTO, Soh UENOYAMA
  • Publication number: 20180074227
    Abstract: A metasurface is capable of modulating input light including a wavelength in a range of 880 nm to 40 ?m. The metasurface includes: a GaAs substrate including a light input surface into which input light is input and a light output surface facing the light input surface; an interlayer having a lower refractive index than GaAs and disposed on the light output surface side of the GaAs substrate; and a plurality of V-shaped antenna elements disposed on a side of the interlayer which is opposite to the GaAs substrate side and including a first arm and a second arm continuous with one end of the first arm.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 15, 2018
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshiro NOMOTO, Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Takahiro SUGIYAMA, Soh UENOYAMA
  • Publication number: 20180074226
    Abstract: A metasurface includes a substrate including a light input surface into which input light is input and a light output surface facing the light input surface, and a plurality of V-shaped antenna elements disposed on the light output surface of the substrate and including a first arm and a second arm continuing on one end of the first arm. The each of the V-shaped antenna elements has a thickness in a range of 100 nm to 400 nm.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 15, 2018
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshiro NOMOTO, Yoshitaka KUROSAKA, Kazuyoshi HIROSE, Takahiro SUGIYAMA, Soh UENOYAMA