Patents by Inventor Sohel K. SHAIKH

Sohel K. SHAIKH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220266230
    Abstract: Methods of producing an isomerization catalyst include preparing a catalyst precursor solution, hydrothermally treating the catalyst precursor solution to produce a magnesium oxide precipitant, calcining the magnesium oxide precipitant to produce an isomerization catalyst precursor, soaking the isomerization catalyst precursor in an acid solution comprising sulfuric acid to product a isomerization catalyst precursor precipitant, and calcining the isomerization catalyst precursor precipitant to produce the isomerization catalyst. The catalyst precursor solution includes at least a magnesium precursor, a hydrolyzing agent, and cetrimonium bromide. Methods of producing 1-butene from a 2-butene-containing feedstock with the isomerization catalyst are also disclosed.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Applicant: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Munir D. Khokhar, Sohel K. Shaikh
  • Publication number: 20220243135
    Abstract: A system for upgrading pyrolysis oil may include a pyrolysis upgrading unit having a mixed metal oxide catalyst and a separation unit operable to separate used mixed metal oxide catalyst from a reaction effluent. A method for upgrading pyrolysis oil may include contacting the pyrolysis oil with hydrogen in the presence of the mixed metal oxide catalyst at reaction conditions to produce a reaction effluent. The pyrolysis oil may include multi-ring aromatic compounds. The mixed metal oxide catalyst may include a plurality of catalyst particles and each of the plurality of catalyst particles having a plurality of metal oxides. Contacting the pyrolysis oil with hydrogen in the presence of the mixed metal oxide catalyst at the reaction conditions may convert at least a portion of the multi-ring aromatic compounds in the pyrolysis oil to the light aromatic compounds.
    Type: Application
    Filed: February 4, 2021
    Publication date: August 4, 2022
    Applicant: Saudi Arabian Oil Company
    Inventors: Miao Sun, Noor Al-Mana, Sohel K Shaikh, Zhonglin Zhang, Fahad A. Almalki
  • Patent number: 11384297
    Abstract: A system for upgrading pyrolysis oil may include a pyrolysis upgrading unit having a mixed metal oxide catalyst and a separation unit operable to separate used mixed metal oxide catalyst from a reaction effluent. A method for upgrading pyrolysis oil may include contacting the pyrolysis oil with hydrogen in the presence of the mixed metal oxide catalyst at reaction conditions to produce a reaction effluent. The pyrolysis oil may include multi-ring aromatic compounds. The mixed metal oxide catalyst may include a plurality of catalyst particles and each of the plurality of catalyst particles having a plurality of metal oxides. Contacting the pyrolysis oil with hydrogen in the presence of the mixed metal oxide catalyst at the reaction conditions may convert at least a portion of the multi-ring aromatic compounds in the pyrolysis oil to the light aromatic compounds.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: July 12, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Noor Al-Mana, Sohel K Shaikh, Zhonglin Zhang, Fahad A. Almalki
  • Patent number: 11377400
    Abstract: A method for upgrading pyrolysis oil includes contacting a pyrolysis oil feed with hydrogen in the presence of a mixed metal oxide catalyst in a slurry reactor to produce an intermediate stream comprising light aromatic compounds comprising mono-aromatic compounds, di-aromatic compounds, or both, passing the intermediate stream to a hydrocracking reactor, contacting the intermediate stream with hydrogen in the presence of a hydrocracking catalyst in a hydrocracking reactor to produce a hydrocracking effluent comprising aromatic compounds having six to nine carbon atoms, passing the hydrocracking effluent to a transalkylation reactor, and contacting the hydrocracking effluent with hydrogen in the presence of a transalkylation catalyst in the transalkylation reactor to produce a transalkylation effluent comprising xylenes.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: July 5, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Sohel K Shaikh, Ibrahim A. Abba, Zhonglin Zhang
  • Patent number: 11345864
    Abstract: A system for upgrading pyrolysis oil may include a pyrolysis upgrading unit having a mixed metal oxide catalyst and a separation unit operable to separate used mixed metal oxide catalyst from a reaction effluent. A method for upgrading pyrolysis oil may include contacting the pyrolysis oil with hydrogen in the presence of the mixed metal oxide catalyst at reaction conditions to produce a reaction effluent. The pyrolysis oil may include multi-ring aromatic compounds. The mixed metal oxide catalyst may include a plurality of catalyst particles and each of the plurality of catalyst particles having a plurality of metal oxides. Contacting the pyrolysis oil with hydrogen in the presence of the mixed metal oxide catalyst at the reaction conditions may convert at least a portion of the multi-ring aromatic compounds in the pyrolysis oil to the light aromatic compounds.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 31, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Noor Al-Mana, Sohel K Shaikh, Zhonglin Zhang, Fahad A. Almalki
  • Patent number: 11339332
    Abstract: Processes for producing olefins include introducing a hydrocarbon feed to a high-severity fluidized catalytic cracking system, contacting the hydrocarbon feed with a cracking catalyst under high-severity conditions in the high-severity fluidized catalytic cracking system to produce a cracking reaction effluent comprising butene, and passing at least a portion of the cracking reaction effluent, which includes at least butene, to a metathesis system. The processes further include contacting the portion of the cracking reaction effluent with a metathesis catalyst in the metathesis system, which causes at least a portion of the butene in the cracking C4 effluent to undergo a metathesis reaction to produce a metathesis reaction effluent comprising at least one of ethylene, propene, or both. The processes may further include separating a metathesis C5+ effluent from the metathesis reaction effluent and passing the metathesis C5+ effluent back to the high-severity fluidized catalytic cracking unit.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: May 24, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Sohel K. Shaikh, Raed H. Abudawoud, Zhonglin Zhang, Munir D. Khokhar, Furqan Aljumah
  • Patent number: 11319263
    Abstract: Methods of producing 1-butene from a 2-butene-containing feedstock include feeding a hydrocarbon feed comprising 2-butene to a reactor, the reactor containing an isomerization catalyst and contacting the hydrocarbon feed with the isomerization catalyst in the reactor at a temperature from 150° C. to 350° C. to produce an isomerization reaction effluent comprising 1-butene. Further, the isomerization catalyst comprises a MCM-48 catalyst with WO3 incorporated into a silica framework of the MCM-48 catalyst.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 3, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Munir D. Khokhar, Sohel K. Shaikh
  • Patent number: 11311869
    Abstract: Methods of producing an isomerization catalyst include preparing a catalyst precursor solution, hydrothermally treating the catalyst precursor solution to produce a magnesium oxide precipitant, and calcining the magnesium oxide precipitant to produce the isomerization catalyst. The catalyst precursor solution includes at least a magnesium precursor, a hydrolyzing agent, and cetrimonium bromide. Methods of producing 1-butene from a 2-butene-containing feedstock with the isomerization catalyst are also disclosed.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: April 26, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Sohel K. Shaikh, Munir D. Khokhar
  • Patent number: 11254879
    Abstract: A process for removing asphaltenes from an oil feed, the process comprising the steps of introducing the oil feed to a de-asphalting column, where the oil feed comprises a carbonaceous material and asphaltenes, where the de-asphalting column comprises a heteropolyacid, operating the de-asphalting column at a reaction temperature and a reaction pressure for a residence time such that the heteropolyacid is operable to catalyze an acid catalyzed polymerization reaction of the asphaltenes to produce polymerized asphaltenes, the polymerized asphaltenes precipitate from the carbonaceous material in the oil feed, and withdrawing a de-asphalted oil from the de-asphalting column, where the de-asphalted oil is in the absence of the heteropolyacids, where the de-asphalted oil has a lower concentration of sulfur, a lower concentration of nitrogen, and a lower concentration of metals as compared to the oil feed, where the process for removing asphaltenes is in the absence of added hydrogen gas.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: February 22, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Miao Sun, Zhonglin Zhang, Sohel K Shaikh
  • Patent number: 11242299
    Abstract: Embodiments of methods of synthesizing a metathesis catalyst system, which include impregnating tungsten oxide on silica support in the presence of a precursor to produce a base catalyst; calcining the base catalyst; impregnating a metal oxide co-catalyst comprising a metal oxide onto the surface of the base catalyst to produce a doped catalyst; and calcining the doped catalyst to produce a metathesis catalyst system. Further embodiments of processes for the production of propylene, which include contacting a hydrocarbon feedstock comprising a mixture of 1-butene and 2-butene with embodiments of the metathesis catalyst system to produce, via metathesis conversion, a product stream comprising propylene.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: February 8, 2022
    Assignees: Saudi Arabian Oil Company, Aramco Services Company
    Inventors: Munir D. Khokhar, Mohammed R. Alalouni, Noor A. Sulais, Brian Hanna, Sohel K. Shaikh
  • Patent number: 11242300
    Abstract: Embodiments of methods of synthesizing a metathesis catalyst system, which include impregnating tungsten oxide on silica support in the presence of a precursor to produce a base catalyst; calcining the base catalyst; dispersing a solid metal-based co-catalyst onto the surface of the base catalyst to produce a doped catalyst; and calcining the doped catalyst to produce a metathesis catalyst system. Further embodiments of processes for the production of propylene, which include contacting a hydrocarbon feedstock comprising a mixture of 1-butene and 2-butene with embodiments of the metathesis catalyst system to produce, via metathesis conversion, a product stream comprising propylene.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: February 8, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Mohammed R. Alalouni, Noor A. Sulais, Brian Hanna, Sohel K. Shaikh
  • Patent number: 11242297
    Abstract: Embodiments of processes and multiple-stage catalyst systems for producing propylene comprising introducing a hydrocarbon stream comprising 2-butene to an isomerization catalyst zone to isomerize the 2-butene to 1-butene, passing the 2-butene and 1-butene to a metathesis catalyst zone to cross-metathesize the 2-butene and 1-butene into a metathesis product stream comprising propylene and C4-C6 olefins, and cracking the metathesis product stream in a catalyst cracking zone to produce propylene. The isomerization catalyst zone comprises a silica-alumina catalyst with a ratio by weight of alumina to silica from 1:99 to 20:80. The metathesis catalyst comprises a mesoporous silica catalyst support impregnated with metal oxide. The catalyst cracking zone comprises a mordenite framework inverted (MFI) structured silica catalyst.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: February 8, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Faisal H. Alshafei, Munir D. Khokhar, Noor A. Sulais, Mohammed R. Alalouni, Sohel K. Shaikh
  • Patent number: 11225617
    Abstract: In accordance with one or more embodiments of the present disclosure, a continuous catalytic deasphalting process includes introducing a feed comprising crude oil and solvent to a first reactor to deasphalt the feed, producing polymerized asphaltene adsorbed to the catalyst and deasphalted oil; introducing solvent to a second reactor to regenerate catalyst in the second reactor while the deasphalting step is performed in the first reactor; introducing a wash solvent to the first reactor after deasphalting to remove the polymerized asphaltene, thereby regenerating the catalyst in the first reactor and producing a mixture comprising solvent and polymerized asphaltene; passing the mixture to a separator downstream of the reactor system to separate the wash solvent from the polymerized asphaltenes; and reintroducing at least a portion of the separated wash solvent to at least one of the first and second reactors.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: January 18, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Qi Xu, Zhonglin Zhang, Sohel K. Shaikh
  • Publication number: 20210403815
    Abstract: In accordance with one or more embodiments of the present disclosure, a continuous catalytic deasphalting process includes introducing a feed comprising crude oil and solvent to a first reactor to deasphalt the feed, producing polymerized asphaltene adsorbed to the catalyst and deasphalted oil; introducing solvent to a second reactor to regenerate catalyst in the second reactor while the deasphalting step is performed in the first reactor; introducing a wash solvent to the first reactor after deasphalting to remove the polymerized asphaltene, thereby regenerating the catalyst in the first reactor and producing a mixture comprising solvent and polymerized asphaltene; passing the mixture to a separator downstream of the reactor system to separate the wash solvent from the polymerized asphaltenes; and reintroducing at least a portion of the separated wash solvent to at least one of the first and second reactors.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 30, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Miao Sun, Qi Xu, Zhonglin Zhang, Sohel K. Shaikh
  • Patent number: 11185850
    Abstract: Composite catalysts includes zeolite particles at least partially embedded in a catalyst support material and at least one catalytically active compound deposited on the outer surfaces and pore surfaces of the catalyst support material, zeolite particles, or both. A method of making the composite catalysts may include preparing a catalyst precursor mixture that includes the zeolite, catalyst support material, triblock copolymer surfactant, and the catalytically active compound precursor and spray drying the catalyst precursor mixture. The composite catalysts may be used as a single catalyst for conducting olefin metathesis and cracking reactions. A method for producing propene may include contacting a butene-containing feed with the composite catalysts.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 30, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Zahra Almisbaa, Sohel K. Shaikh, Raed Abudawoud
  • Publication number: 20210301213
    Abstract: Processes for producing olefins include integration of steam cracking with a dual catalyst metathesis process. The processes include steam cracking a hydrocarbon feed to form a cracking reaction effluent containing butenes, separating the cracking reaction effluent to produce a cracking C4 effluent including normal butenes, isobutene, and 1,3-butadiene, subjecting the cracking C4 effluent to selective hydrogenation to convert 1,3-butadiene in the cracking C4 effluent to normal butenes, removing isobutene from a hydrogenation effluent to produce a metathesis feed containing normal butenes, and contacting the metathesis feed with a metathesis catalyst and a cracking catalyst directly downstream of the metathesis catalyst to produce a metathesis reaction effluent.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 30, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel K Shaikh, Raed H Abudawoud, Zhonglin Zhang, Munir D Khokhar, Furqan Aljumah
  • Patent number: 11111192
    Abstract: A method for producing para-xylene (PX) includes introducing a C8 aromatic-containing composition to a xylene rerun column to separate the C8 aromatic-containing composition into a xylene-containing effluent and a heavy effluent and passing the xylene-containing effluent to a PX processing loop that includes a PX recovery unit operable to separate a PX product from the xylene-containing effluent, a membrane isomerization unit operable to convert a portion of the MX, OX, or both from the xylene-containing effluent to PX, an EB dealkylation unit operable to dealkylate EB from the xylene-containing effluent to produce benzene, toluene, and other C7? compounds, and a membrane separation unit operable to produce a permeate that is PX-rich and a retentate that is PX-lean. The permeate is passed to the PX recovery unit for recovery of PX, which the retentate is bypassed around the PX recovery unit circulated through the xylene processing loop.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: September 7, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Zhonglin Zhang, Sohel K Shaikh, Veera Venkata R Tammana, Raed H. Abudawoud, Bruce Richard Beadle, Hisham Tawfiq Bassam, Rakan Sulaiman Bilaus
  • Publication number: 20210238485
    Abstract: Processes for producing olefins include introducing a hydrocarbon feed to a high-severity fluidized catalytic cracking system, contacting the hydrocarbon feed with a cracking catalyst under high-severity conditions in the high-severity fluidized catalytic cracking system to produce a cracking reaction effluent comprising butene, and passing at least a portion of the cracking reaction effluent, which includes at least butene, to a metathesis system. The processes further include contacting the portion of the cracking reaction effluent with a metathesis catalyst in the metathesis system, which causes at least a portion of the butene in the cracking C4 effluent to undergo a metathesis reaction to produce a metathesis reaction effluent comprising at least one of ethylene, propene, or both. The processes may further include separating a metathesis C5+ effluent from the metathesis reaction effluent and passing the metathesis C5+ effluent back to the high-severity fluidized catalytic cracking unit.
    Type: Application
    Filed: January 29, 2020
    Publication date: August 5, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Sohel K. Shaikh, Raed H. Abudawoud, Zhonglin Zhang, Munir D. Khokhar, Furqan Aljumah
  • Publication number: 20210162384
    Abstract: Composite catalysts includes zeolite particles at least partially embedded in a catalyst support material and at least one catalytically active compound deposited on the outer surfaces and pore surfaces of the catalyst support material, zeolite particles, or both. A method of making the composite catalysts may include preparing a catalyst precursor mixture that includes the zeolite, catalyst support material, triblock copolymer surfactant, and the catalytically active compound precursor and spray drying the catalyst precursor mixture. The composite catalysts may be used as a single catalyst for conducting olefin metathesis and cracking reactions. A method for producing propene may include contacting a butene-containing feed with the composite catalysts.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Munir D. Khokhar, Zahra Almisbaa, Sohel K. Shaikh, Raed Abudawoud
  • Publication number: 20210162395
    Abstract: Methods of producing an isomerization catalyst include preparing a catalyst precursor solution, hydrothermally treating the catalyst precursor solution to produce a magnesium oxide precipitant, and calcining the magnesium oxide precipitant to produce the isomerization catalyst. The catalyst precursor solution includes at least a magnesium precursor, a hydrolyzing agent, and cetrimonium bromide. Methods of producing 1-butene from a 2-butene-containing feedstock with the isomerization catalyst are also disclosed.
    Type: Application
    Filed: December 3, 2019
    Publication date: June 3, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Afnan Alghannam, Sohel K. Shaikh, Munir D. Khokhar