Patents by Inventor Soonam Park

Soonam Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170309509
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 9773648
    Abstract: Embodiments of the present technology may include a method of processing a semiconductor substrate. The method may include providing the semiconductor substrate in a processing region. Additionally, the method may include flowing gas through a cavity defined by a powered electrode. The method may further include applying a negative voltage to the powered electrode. Also, the method may include striking a hollow cathode discharge in the cavity to form hollow cathode discharge effluents from the gas. The hollow cathode discharge effluents may then be flowed to the processing region through a plurality of apertures defined by electrically grounded electrode. The method may then include reacting the hollow cathode discharge effluents with the semiconductor substrate in the processing region.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: September 26, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Yi-Heng Sen, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20170254755
    Abstract: Implementations of the present disclosure relate to a plasma chamber having an optical device for measuring emission intensity of plasma species. In one implementation, the plasma chamber includes a chamber body defining a substrate processing region therein, the chamber body having a sidewall, a viewing window disposed in the sidewall, and a plasma monitoring device coupled to the viewing window. The plasma monitoring device includes an objective lens and an aperture member having a pinhole, wherein the aperture member is movable relative to the objective lens by an actuator to adjust the focal point in the plasma using principles of optics, allowing only the light rays from the focal point in the plasma to reach the pinhole. The plasma monitoring device therefore enables an existing OES (coupled to the plasma monitoring device through an optical fiber) to monitor emission intensity of the species at any specific locations of the plasma.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 7, 2017
    Inventors: Tae Seung CHO, Junghoon KIM, Soonwook JUNG, Soonam PARK, Dmitry LUBOMIRSKY
  • Publication number: 20170236689
    Abstract: Embodiments of the present disclosure generally relate to a method for reducing particle generation in a processing chamber. In one embodiment, the method includes generating a plasma between a first electrode and a second electrode of the processing chamber by applying a radio frequency (RF) power to the first electrode during an etch process, wherein the first electrode is disposed above the second electrode, and the second electrode is disposed above and opposing a substrate support having a substrate supporting surface, and applying a constant zero DC bias voltage to the first electrode during the process.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Inventors: Jonghoon BAEK, Soonam PARK, Xinglong CHEN, Dmitry LUBOMIRSKY
  • Publication number: 20170236693
    Abstract: A substrate support assembly includes a shaft assembly, a pedestal coupled to a portion of the shaft assembly, and a first rotary connector coupled to the shaft assembly, wherein the first rotary connector comprises a first coil member surrounding a rotatable shaft member that is electrically coupled to the shaft assembly, the first coil member being rotatable with the rotatable shaft, and a second coil member surrounding the first coil member, the second coil member being stationary relative to the first coil member, wherein the first coil member electrically couples with the second coil member when the rotating radio frequency applicator is energized and provides a radio frequency signal/power to the pedestal through the shaft assembly.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 17, 2017
    Inventors: Satoru KOBAYASHI, Kirby HANE FLOYD, Hiroji HANAWA, Soonam PARK, Dmitry LUBOMIRSKY
  • Publication number: 20170236691
    Abstract: Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 17, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Qiwei Liang, Xinglong Chen, Kien Chuc, Dmitry Lubomirsky, Soonam Park, Jang-Gyoo Yang, Shankar Venkataraman, Toan Tran, Kimberly Hinckley, Saurabh Garg
  • Publication number: 20170229326
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. The puck includes an electrically insulating material that defines a top surface of the puck; a plurality of electrodes are embedded within the electrically insulating material. The puck also includes an inner puck element that forms one or more channels for a heat exchange fluid, the inner puck element being in thermal communication with the electrically insulating material, and an electrically conductive plate disposed proximate to the inner puck element. The shaft includes an electrically conductive shaft housing that is electrically coupled with the plate, and a plurality of connectors, including electrical connectors for the electrodes. The base includes an electrically conductive base housing that is electrically coupled with the shaft housing, and an electrically insulating terminal block disposed within the base housing, the plurality of connectors passing through the terminal block.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 10, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Zilu Weng, Dmitry Lubomirsky, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Son M. Phi, Shankar Venkataraman
  • Publication number: 20170226637
    Abstract: A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a precursor distribution system that includes at least one top inlet and a plurality of side inlets. The top inlet may be positioned above the substrate stage and the side inlets may be radially distributed around the substrate stage. The reactive radical precursor may be supplied to the deposition chamber through the top inlet. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 10, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Qiwei Liang, Soonam Park, Kien N. Chuc, Ellie Yieh
  • Publication number: 20170229293
    Abstract: A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 10, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 9728437
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 8, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 9711366
    Abstract: Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. A remote plasma is used to excite the halogen-containing precursor and a local plasma may be used in embodiments. Metal-containing materials on the substrate may be pretreated using moisture or another OH-containing precursor before exposing the resulting surface to remote plasma excited halogen effluents in embodiments.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 18, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Jessica Sevanne Kachian, Lin Xu, Soonam Park, Xikun Wang, Jeffrey W. Anthis
  • Publication number: 20170148611
    Abstract: Embodiments of the present disclosure generally relate to an apparatus and method for reducing particle generation in a processing chamber. In one embodiment, an apparatus for processing a substrate is disclosed. The apparatus includes a chamber body, a lid assembly disposed above the chamber body, the lid assembly comprising a top electrode and a bottom electrode positioned substantially parallel to the top electrode, a gas distribution plate disposed between a substrate processing region and the lid assembly, and a substrate support disposed within the chamber body, the substrate support supporting having a substrate supporting surface, wherein the top electrode is in electrical communication with a radio frequency (RF) power supply and a DC bias modulation configuration, and the DC bias modulation configuration is configured to operate the top electrode at a constant zero DC bias voltage during a process.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Jonghoon BAEK, Soonam PARK, Xinglong CHEN, Dmitry LUBOMIRSKY
  • Patent number: 9659753
    Abstract: A plasma source includes a first electrode and a second electrode having respective surfaces, and an insulator that is between and in contact with the electrodes. The electrode surfaces and the insulator surface substantially define a plasma cavity. The insulator surface defines one or more grooves configured to prevent deposition of material in a contiguous form on the insulator surface. A method of generating a plasma includes introducing one or more gases into a plasma cavity defined by a first electrode, a surface of an insulator that is in contact with the first electrode, and a second electrode that faces the first electrode. The insulator surface defines one or more grooves where portions of the insulator surface are not exposed to a central region of the cavity. The method further includes providing RF energy across the first and second electrodes to generate the plasma within the cavity.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 23, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Tae Cho, Sang Won Kang, Dongqing Yang, Raymond W. Lu, Peter Hillman, Nicholas Celeste, Tien Fak Tan, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20170125219
    Abstract: A rotating microwave is established for any resonant mode TEmnl or TMmnl of a cavity, where the user is free to choose the values of the mode indices m, n and 1. The fast rotation, the rotation frequency of which is equal to an operational microwave frequency, is accomplished by setting the temporal phase difference ?Ø and the azimuthal angle ?? between two microwave input ports P and Q as functions of m, n and 1. The slow rotation of frequency ?? (typically 1-1000 Hz), is established by transforming dual field inputs ? cos ??t and ±? sin ??t in the orthogonal input system into an oblique system defined by the angle ?? between two microwave ports P and Q.
    Type: Application
    Filed: June 13, 2016
    Publication date: May 4, 2017
    Inventors: Satoru Kobayashi, Hideo Sugai, Toan Tran, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20170110290
    Abstract: A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
    Type: Application
    Filed: December 29, 2016
    Publication date: April 20, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Soonam Park, Dmitry Lubomirsky, Hideo Sugai
  • Patent number: 9593421
    Abstract: Methods for reducing particle generation in a processing chamber are disclosed. The methods generally include generating a plasma between a powered top electrode and a grounded bottom electrode, wherein the top electrode is parallel to the bottom electrode, and applying a constant zero DC bias voltage to the powered top electrode during a film deposition process to minimize the electrical potential difference between the powered top electrode and the plasma and/or the electrical potential difference between the grounded bottom electrode and the plasma.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: March 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jonghoon Baek, Soonam Park, Xinglong Chen, Dmitry Lubomirsky
  • Publication number: 20170069466
    Abstract: A method and apparatus for substrate etching are described herein. A processing chamber described herein includes a source module, a process module, a flow module, and an exhaust module. An RF source may be coupled to the chamber and a remote plasma may be generated in the source module and a direct plasma may be generated in the process module. Cyclic etching processes described may use alternating radical and direct plasmas to etch a substrate.
    Type: Application
    Filed: January 13, 2016
    Publication date: March 9, 2017
    Inventors: Toan Q. TRAN, Soonam PARK, Junghoon KIM, Dmitry LUBOMIRSKY
  • Publication number: 20170062184
    Abstract: An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 2, 2017
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Toan Q. Tran, Soonam Park, Zilu Weng, Dmitry Lubomirsky
  • Patent number: 9564296
    Abstract: A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: February 7, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Soonam Park, Dmitry Lubomirsky, Hideo Sugai
  • Publication number: 20170011931
    Abstract: Methods of selectively etching an exposed portion of a patterned substrate relative to a second exposed portion are described. The etching process is a gas phase etch which uses an oxidizing precursor unexcited in any plasma prior to combination with plasma effluents formed in a remote plasma from an inert precursor. The plasma effluents may be combined with the oxidizing precursor in a plasma-free remote chamber region and/or in a plasma-free substrate processing region. The combination of the plasma effluents excites the oxidizing precursor and removes material from the exposed portion of the patterned substrate. The etch rate is controllable and selectable by adjusting the flow rate of the oxidizing precursor or the unexcited/plasma-excited flow rate ratio.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 12, 2017
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Soonam Park, Kenneth D. Schatz, Soonwook Jung, Dmitry Lubomirsky