Patents by Inventor Srikanth B. Samavedam

Srikanth B. Samavedam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7655550
    Abstract: A semiconductor device has a gate with three conductive layers over a high K gate dielectric. The first layer is substantially oxygen free. The work function is modulated to the desired work function by a second conductive layer in response to subsequent thermal processing. The second layer is a conductive oxygen-bearing metal. With sufficient thickness of the first layer, there is minimal penetration of oxygen from the second layer through the first layer to adversely impact the gate dielectric but sufficient penetration of oxygen to change the work function to a more desirable level. A third layer, which is metallic, is deposited over the second layer. A polysilicon layer is deposited over the third layer. The third layer prevents the polysilicon layer and the oxygen-bearing layer from reacting together.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 2, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, David C. Gilmer, Mark V. Raymond, Philip J. Tobin, Srikanth B. Samavedam
  • Publication number: 20090291540
    Abstract: A semiconductor process and apparatus includes forming NMOS and PMOS transistors (24, 34) with enhanced hole mobility in the channel region of a transistor by selectively relaxing part of a biaxial-tensile strained semiconductor layer (90) in a PMOS device area (97) to form a relaxed semiconductor layer (91), and then epitaxially growing a bi-axially stressed silicon germanium channel region layer (22) prior to forming the NMOS and PMOS gate structures (26, 36) overlying the channel regions, and then depositing a contact etch stop layer (53-56) over the NMOS and PMOS gate structures. Embedded silicon germanium source/drain regions (84) may also be formed adjacent to the PMOS gate structure (70) to provide an additional uni-axial stress to the bi-axially stressed channel region.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 26, 2009
    Inventors: Da Zhang, Srikanth B. Samavedam, Voon-Yew Thean, Xiangdong Chen
  • Publication number: 20090289280
    Abstract: A semiconductor process and apparatus includes forming <100> channel orientation PMOS transistors (34) with enhanced hole mobility in the channel region of a transistor by epitaxially growing a bi-axially stressed silicon germanium channel region layer (22), alone or in combination with an underlying silicon carbide layer (86), prior to forming a PMOS gate structure (36) overlying the channel region layer, and then depositing a neutral (53) or compressive (55) contact etch stop layer over the PMOS gate structure. Embedded silicon germanium source/drain regions (84) may also be formed adjacent to the PMOS gate structure (70) to provide an additional uni-axial stress to the bi-axially stressed channel region.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 26, 2009
    Inventors: Da Zhang, Srikanth B. Samavedam, Voon-Yew Thean, Xiangdong Chen
  • Publication number: 20090286387
    Abstract: A semiconductor process and apparatus fabricate a metal gate electrode by forming a first conductive layer (14) over a gate dielectric layer (12) and then selectively introducing nitrogen into the portions of the first conductive layer (14) in the PMOS device region (1), either by annealing (42) a nitrogen-containing diffusion layer (22) formed in the PMOS device region (1) or by performing an ammonia anneal process (82) while the NMOS device region (2) is masked. By introducing nitrogen into the first conductive layer (14), the work function is modulated toward PMOS band edge.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Inventors: David C. Gilmer, Srikanth B. Samavedam, James K. Schaeffer, Voon-Yew Thean
  • Publication number: 20090242944
    Abstract: A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Inventors: Da Zhang, Christopher C. Hobbs, Srikanth B. Samavedam
  • Publication number: 20090108296
    Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam
  • Publication number: 20090068807
    Abstract: A method of forming devices including forming a first region and a second region in a semiconductor substrate is provided. The method further includes forming a semiconductive material over the first region, wherein the semiconductive material has a different electrical property than the first semiconductor substrate, forming a first dielectric material over the first region, depositing a second dielectric material over the first dielectric material and over the second region, wherein the second dielectric material is different than the first dielectric material, and depositing a gate electrode material over the high dielectric constant material. In one embodiment, the semiconductive material is silicon germanium and the semiconductor substrate is silicon.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 12, 2009
    Inventors: Gauri V. Karve, Srikanth B. Samavedam, William J. Taylor, JR.
  • Publication number: 20090035928
    Abstract: A method of making a semiconductor device includes making a gate dielectric with an overlying gate electrode. The semiconductor device is made over a semiconductor layer. A high-k dielectric comprising hafnium zirconate is deposited over the semiconductor layer. The high-k dielectric is annealed at a temperature between 650 degrees Celsius and 850 degrees Celsius in an ambient comprising hydrogen and nitrogen. The gate electrode is formed on the high-k dielectric. The high-k dielectric function is for use in the gate dielectric. One affect is to improve the transistor performance while retaining or even improving the level of gate leakage.
    Type: Application
    Filed: July 30, 2007
    Publication date: February 5, 2009
    Inventors: Rama I. Hegde, Srikanth B. Samavedam
  • Publication number: 20090029538
    Abstract: A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 29, 2009
    Inventors: William J. Taylor, JR., Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer
  • Publication number: 20090004792
    Abstract: A method for forming a semiconductor structure includes forming a channel region layer over a semiconductor layer where the semiconductor layer includes a first and a second well region, forming a protection layer over the channel region layer, forming a first gate dielectric layer over the first well region, forming a first metal gate electrode layer over the first gate dielectric, removing the protection layer, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer over the second gate dielectric layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and the first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and the second metal gate electrode layer over the channel region layer.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, JR.
  • Patent number: 7445981
    Abstract: A method includes forming a first gate dielectric layer over a semiconductor layer having a first and a second well region, forming a first metal gate electrode layer over the first gate dielectric, forming a sidewall protection layer over the first metal gate electrode layer and adjacent sidewalls of the first gate dielectric layer and first metal gate electrode layer, forming a channel region layer over the second well region, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and second metal gate electrode layer over the channel region layer and over the second well region.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, Jr.
  • Patent number: 7445976
    Abstract: A stack located over a substrate. The stack includes a layer between a dielectric layer and a metal layer. The layer includes a halogen and a metal. In one embodiment, the halogen is fluorine. In one embodiment, the stack is a control electrode stack for a transistor. In one example the control electrode stack is a gate stack for a MOSFET. In one example, the layer includes aluminum fluoride.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: James K. Schaeffer, Rama I. Hegde, Srikanth B. Samavedam
  • Publication number: 20080261374
    Abstract: A semiconductor device is formed. A first gate dielectric layer is formed over the semiconductor layer. A first conductive layer is formed over the first gate dielectric. A first separation layer is formed over the first conductive layer. A trench is formed in the semiconductor layer to separate the first mesa and the second mesa. The trench is filled with an isolation material to a height above a top surface of the first conductive layer. The first conductive layer is removed from the second mesa. A second conductive layer is formed over the first separation layer of the first mesa and over the second mesa. A planarizing etch removes the second conductive layer from over the first mesa. A first transistor of a first type is formed in the first mesa, and a second transistor of a second type is formed in the second mesa.
    Type: Application
    Filed: April 23, 2007
    Publication date: October 23, 2008
    Inventors: John M. Grant, Srikanth B. Samavedam, Suresh Venkatesan
  • Publication number: 20080224185
    Abstract: A semiconductor device structure is formed over a semiconductor substrate and has a gate dielectric over the semiconductor substrate and a gate over the gate dielectric. The gate, at an interface with the gate dielectric, comprises a transition metal, carbon, and an electropositive element. The transition metal comprises one of group consisting of tantalum, titanium, hafnium, zirconium, molybdenum, and tungsten. The electropositive element comprises one of a group consisting of a Group IIA element, a Group IIIB element, and lanthanide series element.
    Type: Application
    Filed: March 12, 2007
    Publication date: September 18, 2008
    Inventors: Srikanth B. Samavedam, David C. Gilmer, Mark V. Raymond, James K. Schaeffer
  • Publication number: 20080111155
    Abstract: An electronic device includes an n-channel transistor and a p-channel transistor. The p-channel transistor has a first gate electrode with a first work function and a first channel region including a semiconductor layer immediately adjacent to a semiconductor substrate. In one embodiment, the first work function is less than the valence band of the semiconductor layer. In another embodiment, the n-channel transistor has a second gate electrode with a second work function different from the first work function and closer to a conduction band than a valence band of a second channel region. A process of forming the electronic device includes forming first and second gate electrodes having first and second work functions, respectively. First and second channel regions having a same minority carrier type are associated with the first and second gate electrodes, respectively.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Cristiano Capasso, Srikanth B. Samavedam, Eric J. Verret
  • Publication number: 20080001202
    Abstract: A semiconductor device has a gate with three conductive layers over a high K gate dielectric. The first layer is substantially oxygen free. The work function is modulated to the desired work function by a second conductive layer in response to subsequent thermal processing. The second layer is a conductive oxygen-bearing metal. With sufficient thickness of the first layer, there is minimal penetration of oxygen from the second layer through the first layer to adversely impact the gate dielectric but sufficient penetration of oxygen to change the work function to a more desirable level. A third layer, which is metallic, is deposited over the second layer. A polysilicon layer is deposited over the third layer. The third layer prevents the polysilicon layer and the oxygen-bearing layer from reacting together.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: James K. Schaeffer, David C. Gilmer, Mark V. Raymond, Philip J. Tobin, Srikanth B. Samavedam
  • Publication number: 20070272975
    Abstract: A stack located over a substrate. The stack includes a layer between a dielectric layer and a metal layer. The layer includes a halogen and a metal. In one embodiment, the halogen is fluorine. In one embodiment, the stack is a control electrode stack for a transistor. In one example the control electrode stack is a gate stack for a MOSFET. In one example, the layer includes aluminum fluoride.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 29, 2007
    Inventors: James K. Schaeffer, Rama I. Hegde, Srikanth B. Samavedam
  • Patent number: 6972224
    Abstract: A method of fabricating a MOS transistor that comprises a dual-metal gate that is formed from heterotypical metals. A gate dielectric (34), such as HfO2, is deposited on a semiconductor substrate. A sacrificial layer (35), is next deposited over the gate dielectric. The sacrificial layer is patterned so that the gate dielectric over a first (pMOS, for example) area (32) of the substrate is exposed and gate dielectric over a second (nMOS, for example) area (33) of the substrate continues to be protected by the sacrificial layer. A first gate conductor material (51) is deposited over the remaining sacrificial area and over the exposed gate dielectric. The first gate conductor material is patterned so that first gate conductor material over the second area of the substrate is etched away. The sacrificial layer over the second area prevents damage to the underlying dielectric material as the first gate conductor material is removed.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: December 6, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: David C. Gilmer, Srikanth B. Samavedam, Philip J. Tobin
  • Patent number: 6897095
    Abstract: A semiconductor fabrication process includes forming first and second transistors over first and second well regions, respectively where the first transistor has a first gate dielectric and the second transistor has a second gate dielectric different from the first gate dielectric. The first transistor has a first gate electrode and the second transistor has a second gate electrode. The first and second gate electrodes are the same in composition. The first gate dielectric and the second gate dielectric may both include high-K dielectrics such as Hafnium oxide and Aluminum oxide. The first and second gate electrodes both include a gate electrode layer overlying the respective gate dielectrics. The gate electrode layer is preferably either TaSiN and TaC. The first and second gate electrodes may both include a conductive layer overlying the gate electrode layer. In one such embodiment, the conductive layer may include polysilicon and tungsten.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: May 24, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Srikanth B. Samavedam, Bruce E. White
  • Patent number: 6894353
    Abstract: A first gate (120) and a second gate (122) are preferably PMOS and NMOS transistors, respectively, formed in an n-type well (104) and a p-type well (106). In a preferred embodiment first gate (120) includes a first metal layer (110) of titanium nitride on a gate dielectric (108), a second metal layer (114) of tantalum silicon nitride and a silicon containing layer (116) of polysilicon. Second gate (122) includes second metal layer (114) of a tantalum silicon nitride layer on the gate dielectric (108) and a silicon containing layer (116) of polysilicon. First spacers (124) are formed adjacent the sidewalls of the gates to protect the metals from chemistries used to remove photoresist masks during implant steps. Since the chemistries used are selective to polysilicon, the spacers (124) need not protect the polysilicon capping layers, thereby increasing the process margin of the spacer etch process. The polysilicon cap also facilitates silicidation of the gates.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: May 17, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srikanth B. Samavedam, Philip J. Tobin