Patents by Inventor Stanford R. Ovshinsky
Stanford R. Ovshinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20130065356Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows that couple microwave energy to deposition species. The apparatus includes a microwave applicator with one or more conduits that carry deposition species. The applicator transfers microwave energy to the deposition species to energize them to a reactive state. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer and deliver the microwave-excited species to a deposition chamber. Supplemental material streams may be delivered to the deposition chamber without passing through the microwave applicator and may combine with deposition species exiting the conduits to form a thin film material. Precursors for the microwave-excited deposition species include fluorinated forms of silicon.Type: ApplicationFiled: September 24, 2012Publication date: March 14, 2013Applicant: Ovshinsky Innovation LLCInventor: Stanford R. Ovshinsky
-
Publication number: 20130037755Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows that couple microwave energy to deposition species. The apparatus includes a microwave applicator with one or more conduits that carry deposition species. The applicator transfers microwave energy to the deposition species to energize them to a reactive state. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer and deliver the microwave-excited species to a deposition chamber. Supplemental material streams may be delivered to the deposition chamber without passing through the microwave applicator and may combine with deposition species exiting the conduits to form a thin film material. Precursors for the microwave-excited deposition species include fluorinated forms of silicon.Type: ApplicationFiled: September 15, 2012Publication date: February 14, 2013Inventor: Stanford R. Ovshinsky
-
Publication number: 20120263886Abstract: A system and process for the formation of thin film materials. The process includes forming a plasma from a first material stream and allowing the plasma to evolve in space and/or time to extinguish species that are detrimental to the quality of the thin film material. After the plasma evolves to an optimum state, a second material stream is injected into the deposition chamber to form a composite plasma that contains a distribution of species more conducive to formation of a high quality thin film material. The system includes a deposition chamber having a plurality of delivery points for injecting two or more streams into a plasma region. The delivery points are staggered in space to permit an upstream plasma formed from a first material stream deposition source material to evolve before combining a downstream material stream with the plasma.Type: ApplicationFiled: April 29, 2012Publication date: October 18, 2012Inventor: Stanford R. Ovshinsky
-
Patent number: 8273641Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids unintended deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with one or more conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to activate or energize them to a reactive state. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer and deliver the microwave-excited species to a deposition chamber. One or more supplemental material streams may be delivered directly to the deposition chamber without passing through the microwave applicator and may combine with deposition species exiting the one or more conduits to form a thin film material.Type: GrantFiled: December 31, 2010Date of Patent: September 25, 2012Assignee: Ovshinsky Innovation LLCInventor: Stanford R. Ovshinsky
-
Patent number: 8252112Abstract: A method and apparatus for the unusually high rate deposition of thin film materials on a stationary or continuous substrate. The method includes delivery of a pre-selected precursor intermediate to a deposition chamber and formation of a thin film material from the intermediate. The intermediate is formed outside of the deposition chamber and includes a metastable species such as a free radical. The intermediate is pre-selected to include a metastable species conducive to the formation of a thin film material having a low defect concentration. By forming a low defect concentration material, deposition rate is decoupled from material quality and heretofore unprecedented deposition rates are achieved. In one embodiment, the pre-selected precursor intermediate is SiH3.Type: GrantFiled: September 12, 2008Date of Patent: August 28, 2012Assignee: Ovshinsky Innovation, LLCInventor: Stanford R. Ovshinsky
-
Patent number: 8222125Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.Type: GrantFiled: August 12, 2010Date of Patent: July 17, 2012Assignee: Ovshinsky Innovation, LLCInventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Publication number: 20120167984Abstract: Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process.Type: ApplicationFiled: December 31, 2010Publication date: July 5, 2012Inventor: Stanford R. Ovshinsky
-
Publication number: 20120167963Abstract: Device structure that facilitates high rate plasma deposition of thin film photovoltaic materials at microwave frequencies. The device structure includes a primer layer that shields the substrate and underlying layers of the device structure during deposition of layers requiring aggressive, highly reactive deposition conditions. The primer layer prevents or inhibits etching or other modification of the substrate or underlying layers by highly reactive deposition conditions. The primer layer also reduces contamination of subsequent layers of the device structure by preventing or inhibiting release of elements from the substrate or underlying layers into the deposition environment. The presence of the primer layer extends the range of deposition conditions available for forming photovoltaic or semiconducting materials without compromising performance. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors from fluorinated precursors in a microwave plasma process.Type: ApplicationFiled: December 31, 2010Publication date: July 5, 2012Inventor: Stanford R. Ovshinsky
-
Publication number: 20120115274Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus inhibits deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.Type: ApplicationFiled: January 22, 2012Publication date: May 10, 2012Inventors: Stanford R Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Patent number: 8168268Abstract: A deposition system and process for the formation of thin film materials. In one embodiment, the process includes forming an initial plasma from a first material stream and allowing the plasma to evolve in space and/or time to extinguish species that are detrimental to the quality of the thin film material. After the initial plasma evolves to an optimum state, a second material stream is injected into the deposition chamber to form a composite plasma that contains a distribution of species more conducive to formation of a high quality thin film material. The deposition system includes a deposition chamber having a plurality of delivery points for injecting two or more streams (source materials or carrier gases) into a plasma region. The delivery points are staggered in space to permit an upstream plasma formed from a first material stream deposition source material to evolve before combining a downstream material stream with the plasma. Injection of different material streams is also synchronized in time.Type: GrantFiled: December 12, 2008Date of Patent: May 1, 2012Assignee: Ovishinsky Innovation, LLCInventor: Stanford R. Ovshinsky
-
Publication number: 20120040492Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids unintended deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to activate or energize them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. Suitable deposition species include precursors that contain silicon, germanium, fluorine, and/or hydrogen.Type: ApplicationFiled: August 12, 2010Publication date: February 16, 2012Inventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Publication number: 20120040513Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids unintended deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with one or more conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to activate or energize them to a reactive state. The conduits physically isolate deposition species that would react or otherwise combine to form a thin film material at the point of microwave power transfer and deliver the microwave-excited species to a deposition chamber. One or more supplemental material streams may be delivered directly to the deposition chamber without passing through the microwave applicator and may combine with deposition species exiting the one or more conduits to form a thin film material.Type: ApplicationFiled: December 31, 2010Publication date: February 16, 2012Inventor: Stanford R. Ovshinsky
-
Publication number: 20120040493Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.Type: ApplicationFiled: August 12, 2010Publication date: February 16, 2012Inventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Publication number: 20120040518Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus inhibits deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.Type: ApplicationFiled: October 30, 2011Publication date: February 16, 2012Inventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Patent number: 8111546Abstract: A method and device for accomplishing transformation of a switching material from a resistive state to a conductive state. The method utilizes a non-electrical source of energy to effect the switching transformation. The switching material may be a chalcogenide switching material, where the non-electrical source of energy initiates switching by liberating lone pair electrons from bound states of chalcogen atoms. The liberated lone pair electrons form a conductive filament having the characteristics of a solid state plasma to permit high current densities to pass through the switching material. The device includes a switching material with electrical contacts and may be interconnected with other elements in a circuit to regulate electrical communication therebetween.Type: GrantFiled: November 13, 2008Date of Patent: February 7, 2012Assignee: Ovonyx, Inc.Inventor: Stanford R. Ovshinsky
-
Patent number: 8101245Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.Type: GrantFiled: August 12, 2010Date of Patent: January 24, 2012Assignee: Ovshinsky Innovation, LLCInventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Patent number: 8062920Abstract: A photovoltaic device including a current collection element and a method of making same. The photovoltaic device includes a substrate, a conductive layer, an active photovoltaic material, a transparent electrode and a current collection element. The current collection element includes a transparent support and one or more conductive wires integrated therewith. The conductive wires are in electrical communication with the transparent electrode. Current generated by the active photovoltaic material passes to the transparent electrode. The current collection element facilitates delivery of current passing through the transparent electrode to leads that deliver the current to an external load. The method includes placing a pre-fabricated current collection element in direct contact with the transparent electrode of the photovoltaic device. The time and expense of assembling the conductive wires during fabrication of the photovoltaic device is thereby avoided and higher manufacturing speeds are achieved.Type: GrantFiled: July 24, 2009Date of Patent: November 22, 2011Assignee: Ovshinsky Innovation, LLCInventor: Stanford R. Ovshinsky
-
Patent number: 8048782Abstract: Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.Type: GrantFiled: August 12, 2010Date of Patent: November 1, 2011Assignee: Ovshinsky Innovation LLCInventors: Stanford R. Ovshinsky, David Strand, Patrick Klersy, Boil Pashmakov
-
Patent number: 8017198Abstract: A method and apparatus for forming thin film materials via a plasma deposition process in the presence of a magnetic field. A precursor is delivered to a deposition chamber and activated to form a plasma. The plasma may be initiated in the presence of a magnetic field or subjected to a magnetic field after initiation. The plasma includes ionized and neutral species derived from the precursor and the magnetic field manipulates the plasma to effect a reduction in the population of ionized species and an enhancement of the population of neutral species. A thin film material is subsequently formed from the resulting neutral-enriched deposition medium. The method permits formation of thin film materials having a low density of defects. In one embodiment, the thin film material is a photovoltaic material and the suppression of defects leads to an enhancement in photovoltaic efficiency.Type: GrantFiled: April 24, 2009Date of Patent: September 13, 2011Assignee: Ovshinsky Innovation LLCInventor: Stanford R. Ovshinsky
-
Patent number: 7967994Abstract: Chalcogenide devices are delineated and sidewalls of the devices are sealed, in an anaerobic and/or anhydrous environment environment. Throughout the delineation and sealing steps, and any intervening steps, the sidewalls are not exposed to oxygen or water. In an illustrative embodiment, a cluster tool includes an etching tool and a sealing/deposition tool configured to etch and seal the chalcogenide devices and to maintain the devices in an anaerobic and/or anhydrous environment throughout the process.Type: GrantFiled: October 25, 2007Date of Patent: June 28, 2011Assignee: Ovonyx, Inc.Inventors: Tyler Lowrey, Stanford R. Ovshinsky