Patents by Inventor Stanton E. Weaver

Stanton E. Weaver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6883774
    Abstract: A microvalve and a method of forming a microvalve. The microvalve comprises first and second layers, a diaphragm member and a switching means. The first and second layers are secured together to form a valve body that forms an inlet opening for receiving fluid, an outlet opening for conducting fluid from the valve body, and a flow channel for conducting fluid from the inlet to the outlet. The diaphragm is disposed between the layers, and is movable between open and closed positions. In these position, the diaphragm, respectively, allows and blocks the flow of fluid from the inlet to the flow channel. The diaphragm is biased to the closed position, and moves from the closed position to the open position when the pressure of fluid in the inlet reaches a preset value. The switching means is connected to the valve body for moving the diaphragm to the closed position against the pressure of fluid in the inlet.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: April 26, 2005
    Assignee: Lockheed Martin Corporation
    Inventors: Matthew C. Nielsen, Laura J. Meyer, Todd G. Wetzel, Stanton E. Weaver, Jeffrey B. Fortin, Renato Guida
  • Patent number: 6864571
    Abstract: A semiconductor device die (10, 116) is disposed on a heat-sinking support structure (30, 100). Nanotube regions (52, 120) contain nanotubes (54, 126) are arranged on a surface of or in the heatsinking support structure (30, 100). The nanotube regions (52, 120) are arranged to contribute to heat transfer from the semiconductor device die (10, 116) to the heat-sinking support structure (30, 100). In one embodiment, the semiconductor device die (10) includes die electrodes (20, 22), and the support structure (30) includes contact pads (40, 42) defined by at least some of the nanotube regions (52). The contact pads (40, 42) electrically and mechanically contact the die electrodes (20, 22). In another embodiment, the heat-sinking support structure (100) includes microchannels (120) arranged laterally in the support structure (100). At least some of the nanotube regions are disposed inside the microchannels (100).
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: March 8, 2005
    Assignee: GELcore LLC
    Inventors: Mehmet Arik, Stanton E. Weaver, Jr., James C. Carnahan, Charles A. Becker, William D. Gerstler
  • Publication number: 20040256585
    Abstract: A microvalve and a method of forming a microvalve. The microvalve comprises first and second layers, a diaphragm member and a switching means. The first and second layers are secured together to form a valve body that forms an inlet opening for receiving fluid, an outlet opening for conducting fluid from the valve body, and a flow channel for conducting fluid from the inlet to the outlet. The diaphragm is disposed between the layers, and is movable between open and closed positions. In these position, the diaphragm, respectively, allows and blocks the flow of fluid from the inlet to the flow channel. The diaphragm is biased to the closed position, and moves from the closed position to the open position when the pressure of fluid in the inlet reaches a preset value. The switching means is connected to the valve body for moving the diaphragm to the closed position against the pressure of fluid in the inlet.
    Type: Application
    Filed: October 21, 2002
    Publication date: December 23, 2004
    Applicant: Lockheed Martin Corporation
    Inventors: Matthew C. Nielsen, Laura J. Meyer, Todd G. Wetzel, Stanton E. Weaver, Jeffrey B. Fortin, Renato Guida
  • Patent number: 6799864
    Abstract: A light module includes a light emitting diode assembly defining a front side light emitting diode array and a rear side. The rear side is in thermal communication with a thermally conductive spreader, and a thermally conductive core is in thermal communication with the conductive spreader. The thermally conductive core includes an electrical conductor in operative communication with the front side light emitting diode array, and a plurality of appendages disposed about the thermally conductive core such that they are in thermal communication with the conductive spreader.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: October 5, 2004
    Assignee: GELcore LLC
    Inventors: Christopher L. Bohler, Anthony D. Pollard, Greg E. Burkholder, James T. Petroski, Mathew L. Sommers, Robert F. Karlicek, Jr., Stanton E. Weaver, Jr., Charles A. Becker
  • Publication number: 20040112764
    Abstract: A multi-gas sensor device for the detection of dissolved hydrocarbon gases in oil-filled electrical equipment. The device comprising a semiconductor substrate, one or more catalytic metal gate-electrodes deposited on the surface of the semiconductor substrate operable for sensing various gases, and an ohmic contact deposited on the surface of the semiconductor substrate. The semiconductor substrate comprises one of GaN, SiC, AlN, InN, AlGaN, InGaN and AlInGaN. A method for sensing gas in an oil-filled reservoir of electrical equipment, comprising providing a sensor device, immersing the sensor device in the oil-filled reservoir, allowing the gases emitted from the oil to interact with the one or more catalytic metal gate-electrodes, altering the gas as it contacts the catalytic metal gate-electrodes and altering the sensitivity of the sensor.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventors: Edward B. Stokes, Peter M. Sandvik, Vinayak Tilak, Jeffrey B. Fedison, Elena Babes-Dornea, Renyan Qin, James W. Rose, Stanton E. Weaver
  • Patent number: 6661167
    Abstract: A light emitting diode (LED) device (A) and processes for its manufacture are provided. The LED device (A) includes a light emitting chip or die (10) and an encapsulant (22) surrounding the same. The encapsulant (22) is substantially spherical in shape, and the die (10) is preferably located at a substantial center of the encapsulant (22). An electrically conductive path extends from the chip or die (10) to a periphery of the encapsulant (22) such that the chip/die (10) can be selectively energized to produce light by applying electricity to the electrically conductive path at the periphery of the encapsulant (22). Preferably, the encapsulant (22) is chosen to have an index of refraction as close as possible to the higher of an index of refraction of the die's semiconductor material and an index of refraction of the die's substrate (12).
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: December 9, 2003
    Assignee: GELcore LLC
    Inventors: Ivan Eliashevich, Mathew L. Sommers, Stanton E. Weaver, Jr.
  • Publication number: 20020176250
    Abstract: A light module includes a light emitting diode assembly defining a front side light emitting diode array and a rear side. The rear side is in thermal communication with a thermally conductive spreader, and a thermally conductive core is in thermal communication with the conductive spreader. The thermally conductive core includes an electrical conductor in operative communication with the front side light emitting diode array, and a plurality of appendages are disposed about the thermally conductive core such that they are in thermal communication with the conductive spreader.
    Type: Application
    Filed: May 24, 2002
    Publication date: November 28, 2002
    Applicant: GELcore, LLC
    Inventors: Christopher L. Bohler, Anthony D. Pollard, Greg E. Burkholder, James T. Petroski, Mathew L. Sommers, Robert F. Karlicek, Stanton E. Weaver, Charles A. Becker
  • Publication number: 20020158578
    Abstract: A light emitting diode (LED) device (A) and processes for its manufacture are provided. The LED device (A) includes a light emitting chip or die (10) and an encapsulant (22) surrounding the same. The encapsulant (22) is substantially spherical in shape, and the die (10) is preferably located at a substantial center of the encapsulant (22). An electrically conductive path extends from the chip or die (10) to a periphery of the encapsulant (22) such that the chip/die (10) can be selectively energized to produce light by applying electricity to the electrically conductive path at the periphery of the encapsulant (22). Preferably, the encapsulant (22) is chosen to have an index of refraction as close as possible to the higher of an index of refraction of the die's semiconductor material and an index of refraction of the die's substrate (12).
    Type: Application
    Filed: March 14, 2002
    Publication date: October 31, 2002
    Applicant: GELcore, LLC
    Inventors: Ivan Eliashevich, Mathew L. Sommers, Stanton E. Weaver
  • Patent number: 5366906
    Abstract: In fabricating wafer scale integrated interconnects, a temporary or permanent dielectric layer and a pattern of electrical conductors are used to provide wafer scale integration or testing and burn-in. A resist can be used to cover the areas of IC pads on the wafer while the remainder of the pattern of electrical conductors is removed to provide for repair of the wafer scale integration structure. The pattern of electrical conductors may be configured so that the conductor lengths between at least some sub-circuits on a plurality of wafers are substantially electrically equal for signal propagation purposes; an additional wafer may be laminated to the wafer using an adhesive; controlled curfs may be cut into the wafer; and the wafer may be interconnected to an interface ring.
    Type: Grant
    Filed: October 16, 1992
    Date of Patent: November 22, 1994
    Assignee: Martin Marietta Corporation
    Inventors: Robert J. Wojnarowski, Constantine A. Neugebauer, Wolfgang Daum, Bernard Gorowitz, Eric J. Wildi, Michael Gdula, Stanton E. Weaver, Jr., Anthony A. Immorlica, Jr.
  • Patent number: 5279706
    Abstract: A method for fabricating a metal interconnection pattern for an integrated circuit module is provided comprising the steps of: aligning only one face of the module, forming a metal layer on at least one other face of the module, applying a coating of photoresist to the metal layer, exposing predetermined portions of the photoresist to reflected radiation, and shaping the metal layer in accordance with the exposed photoresist portions.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: January 18, 1994
    Assignee: General Electric Company
    Inventors: Ernest W. Balch, Stanton E. Weaver, Jr., William H. King, Bernard Gorowitz
  • Patent number: 5161093
    Abstract: A high density interconnect structure incorporating a plurality of laminated dielectric layers is fabricated using a SPI/epoxy crosslinking copolymer blend adhesive in order to maintain the stability of the already fabricated structure during the addition of the later laminations while also maintaining the repairability of the high density interconnect structure.
    Type: Grant
    Filed: July 2, 1990
    Date of Patent: November 3, 1992
    Assignee: General Electric Company
    Inventors: Thomas B. Gorczyca, Stanton E. Weaver, Jr., Robert J. Wojnarowski