Patents by Inventor Stefan Gabriel
Stefan Gabriel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230118876Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver having a proximal handle and a driver shaft extending therefrom, a distal awl shaft, a proximal awl shaft separate from the distal awl shaft and movable with respect to the distal awl shaft, a suture anchor, and a dilator feature distal to the suture anchor. The distal and proximal awl shafts are receivable in at least part of a lumen of the driver. In a bone forming configuration of the system, in which the distal awl shaft is driven into bone, a distal end of the proximal awl shaft abuts a proximal end of the distal awl shaft. The proximal awl shaft can be moved proximally, such as by activating an awl handle coupled thereto, with respect to the distal awl shaft to move the system in a suture anchor insertion configuration.Type: ApplicationFiled: October 11, 2022Publication date: April 20, 2023Inventors: Adam Gustafson, Stefan Gabriel
-
Patent number: 11559402Abstract: Systems and methods for opposing abnormal motion of an adjacent bone are provided. One exemplary embodiment of a surgical method includes delivering and securing a bone barrier to a bone bed of a glenoid such that at least a portion of the bone barrier extends laterally beyond the bone bed and can oppose, prevent, and/or reduce abnormal motion of an adjacent bone (e.g., a humeral head). The bone barrier can be secured along a periphery of a glenoid of a shoulder. More particularly, the bone barrier can be placed and secured such that at least a portion of the bone barrier extends laterally over the glenoid and can oppose abnormal motion of the humeral head. In some embodiments at least one suture anchor and suture can secure the bone barrier to the bone bed.Type: GrantFiled: February 4, 2020Date of Patent: January 24, 2023Assignee: Medos International SarlInventors: Mehmet Ziya Sengun, Stefan Gabriel, Gerome O. Miller
-
Publication number: 20220378411Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: ApplicationFiled: August 11, 2022Publication date: December 1, 2022Inventors: Adam Gustafson, Stefan Gabriel
-
Patent number: 11497483Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver having a proximal handle and a driver shaft extending therefrom, a distal awl shaft, a proximal awl shaft separate from the distal awl shaft and movable with respect to the distal awl shaft, a suture anchor, and a dilator feature distal to the suture anchor. The distal and proximal awl shafts are receivable in at least part of a lumen of the driver. In a bone forming configuration of the system, in which the distal awl shaft is driven into bone, a distal end of the proximal awl shaft abuts a proximal end of the distal awl shaft. The proximal awl shaft can be moved proximally, such as by activating an awl handle coupled thereto, with respect to the distal awl shaft to move the system in a suture anchor insertion configuration.Type: GrantFiled: December 10, 2019Date of Patent: November 15, 2022Assignee: Medos International SarlInventors: Adam Gustafson, Stefan Gabriel
-
Patent number: 11446020Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: GrantFiled: July 15, 2019Date of Patent: September 20, 2022Assignee: Medos International SarlInventors: Adam Gustafson, Stefan Gabriel
-
Publication number: 20220218399Abstract: In general, scapular tethers and methods of using scapular tethers are provided. A tether is configured to be implanted in a body of a patient and to control movement of the patient's scapula. In an exemplary embodiment, the tether is configured to be attached to at least one body structure in a patient. The tether includes a flexible member configured to, when implanted in the patient, flex in response to movement of the patient's scapula accompanying arm movement of the patient.Type: ApplicationFiled: January 12, 2021Publication date: July 14, 2022Inventors: David B. Spenciner, Stefan Gabriel, Mehmet Ziya Sengun, Donald E. Barry, Philipp Moroder, Marc Jacofsky, Aaron Chamberlain, Annemarie Bridgette von Rechenberg, John M. Tokish, Brianna Lee, Gary McAlister, Benjamin Cleveland
-
Publication number: 20220039790Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include an outer shaft, an elongate inner shaft, and an implantable suture anchor assembly including first and second anchor bodies. The second, more proximal, anchor body has one or more openings extending through a side wall or through opposed side walls thereof. The inner shaft is configured to be received within the outer shaft and through the first and second anchor bodies such that a distal end of the inner shaft protrudes beyond a distal end of the first anchor body. The inner shaft is configured to be removably coupled to the first anchor body such that the inner shaft is configured to be rotated to cause a proximal portion of the first anchor body to move proximally into a lumen extending through the second anchor body and to occlude the opening in the second anchor body.Type: ApplicationFiled: September 20, 2021Publication date: February 10, 2022Inventors: Adam Gustafson, Gerome Miller, Benjamin Cleveland, Stefan Gabriel
-
Patent number: 11123060Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include an outer shaft, an elongate inner shaft, and an implantable suture anchor assembly including first and second anchor bodies. The second, more proximal, anchor body has one or more openings extending through a side wall or through opposed side walls thereof. The inner shaft is configured to be received within the outer shaft and through the first and second anchor bodies such that a distal end of the inner shaft protrudes beyond a distal end of the first anchor body. The inner shaft is configured to be removably coupled to the first anchor body such that the inner shaft is configured to be rotated to cause a proximal portion of the first anchor body to move proximally into a lumen extending through the second anchor body and to occlude the opening in the second anchor body.Type: GrantFiled: February 21, 2019Date of Patent: September 21, 2021Assignee: Medos International SarlInventors: Adam Gustafson, Gerome Miller, Benjamin Cleveland, Stefan Gabriel
-
Publication number: 20210236289Abstract: Systems and methods for opposing abnormal motion of an adjacent bone are provided. One exemplary embodiment of a surgical method includes delivering and securing a bone barrier to a bone bed of a glenoid such that at least a portion of the bone barrier extends laterally beyond the bone bed and can oppose, prevent, and/or reduce abnormal motion of an adjacent bone (e.g., a humeral head). The bone barrier can be secured along a periphery of a glenoid of a shoulder. More particularly, the bone barrier can be placed and secured such that at least a portion of the bone barrier extends laterally over the glenoid and can oppose abnormal motion of the humeral head. In some embodiments at least one suture anchor and suture can secure the bone barrier to the bone bed.Type: ApplicationFiled: February 4, 2020Publication date: August 5, 2021Applicant: Medos International SàrlInventors: Mehmet Ziya Sengun, Stefan Gabriel, Gerome O. Miller
-
Publication number: 20200138428Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver having a proximal handle and a driver shaft extending therefrom, a distal awl shaft, a proximal awl shaft separate from the distal awl shaft and movable with respect to the distal awl shaft, a suture anchor, and a dilator feature distal to the suture anchor. The distal and proximal awl shafts are receivable in at least part of a lumen of the driver. In a bone forming configuration of the system, in which the distal awl shaft is driven into bone, a distal end of the proximal awl shaft abuts a proximal end of the distal awl shaft. The proximal awl shaft can be moved proximally, such as by activating an awl handle coupled thereto, with respect to the distal awl shaft to move the system in a suture anchor insertion configuration.Type: ApplicationFiled: December 10, 2019Publication date: May 7, 2020Inventors: ADAM GUSTAFSON, STEFAN GABRIEL
-
Patent number: 10639026Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver having a proximal handle and a driver shaft extending therefrom, a distal awl shaft, a proximal awl shaft separate from the distal awl shaft and movable with respect to the distal awl shaft, a suture anchor, and a dilator feature distal to the suture anchor. The distal and proximal awl shafts are receivable in at least part of a lumen of the driver. In a bone forming configuration of the system, in which the distal awl shaft is driven into bone, a distal end of the proximal awl shaft abuts a proximal end of the distal awl shaft. The proximal awl shaft can be moved proximally, such as by activating an awl handle coupled thereto, with respect to the distal awl shaft to move the system in a suture anchor insertion configuration.Type: GrantFiled: July 27, 2017Date of Patent: May 5, 2020Assignee: MEDOS INTERNATIONAL SARLInventors: Adam Gustafson, Stefan Gabriel
-
Publication number: 20200029952Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: ApplicationFiled: September 20, 2019Publication date: January 30, 2020Inventors: Adam Gustafson, Stefan Gabriel, Benjamin Cleveland, Gerome Miller, Mehmet Z. Sengun, Mollie Rosen, Justin Piccirillo
-
Patent number: 10531897Abstract: An apparatus and related method for controlling a load on a human ankle joint during normal gait while preserving motion. The approach is intended to treat osteoarthritis and pain of the ankle without substantially resisting an angular displacement associated with full mobility of the ankle joint. In one particular embodiment, the device includes a first load transmission support, a second load transmission support and an implantable compressible absorber.Type: GrantFiled: August 25, 2011Date of Patent: January 14, 2020Assignee: MOXIMED, INC.Inventors: Michael E. Landry, Stefan Gabriel, Anton G. Clifford, David Lowe
-
Publication number: 20190343508Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: ApplicationFiled: July 15, 2019Publication date: November 14, 2019Inventors: Adam Gustafson, Stefan Gabriel
-
Patent number: 10463357Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: GrantFiled: March 13, 2017Date of Patent: November 5, 2019Assignee: MEDOS INTERNATIONAL SARLInventors: Adam Gustafson, Stefan Gabriel, Benjamin Cleveland, Gerome Miller, Mehmet Z. Sengun, Mollie Rosen, Justin Piccirillo
-
Patent number: 10383618Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: GrantFiled: March 13, 2017Date of Patent: August 20, 2019Assignee: MEDOS INTERNATIONAL SARLInventors: Adam Gustafson, Stefan Gabriel
-
Publication number: 20190183479Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include an outer shaft, an elongate inner shaft, and an implantable suture anchor assembly including first and second anchor bodies. The second, more proximal, anchor body has one or more openings extending through a side wall or through opposed side walls thereof. The inner shaft is configured to be received within the outer shaft and through the first and second anchor bodies such that a distal end of the inner shaft protrudes beyond a distal end of the first anchor body. The inner shaft is configured to be removably coupled to the first anchor body such that the inner shaft is configured to be rotated to cause a proximal portion of the first anchor body to move proximally into a lumen extending through the second anchor body and to occlude the opening in the second anchor body.Type: ApplicationFiled: February 21, 2019Publication date: June 20, 2019Inventors: Adam Gustafson, Gerome Miller, Benjamin Cleveland, Stefan Gabriel
-
Patent number: 10245020Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include an outer shaft, an elongate inner shaft, and an implantable suture anchor assembly including first and second anchor bodies. The second, more proximal, anchor body has one or more openings extending through a side wall or through opposed side walls thereof. The inner shaft is configured to be received within the outer shaft and through the first and second anchor bodies such that a distal end of the inner shaft protrudes beyond a distal end of the first anchor body. The inner shaft is configured to be removably coupled to the first anchor body such that the inner shaft is configured to be rotated to cause a proximal portion of the first anchor body to move proximally into a lumen extending through the second anchor body and to occlude the opening in the second anchor body.Type: GrantFiled: March 13, 2017Date of Patent: April 2, 2019Assignee: MEDOS INTERNATIONAL SARLInventors: Adam Gustafson, Gerome Miller, Benjamin Cleveland, Stefan Gabriel
-
Publication number: 20190029663Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver having a proximal handle and a driver shaft extending therefrom, a distal awl shaft, a proximal awl shaft separate from the distal awl shaft and movable with respect to the distal awl shaft, a suture anchor, and a dilator feature distal to the suture anchor. The distal and proximal awl shafts are receivable in at least part of a lumen of the driver. In a bone forming configuration of the system, in which the distal awl shaft is driven into bone, a distal end of the proximal awl shaft abuts a proximal end of the distal awl shaft. The proximal awl shaft can be moved proximally, such as by activating an awl handle coupled thereto, with respect to the distal awl shaft to move the system in a suture anchor insertion configuration.Type: ApplicationFiled: July 27, 2017Publication date: January 31, 2019Inventors: Adam Gustafson, Stefan Gabriel
-
Publication number: 20180256150Abstract: Methods and systems are provided for securing tissue to bone. A surgical system can include a driver device, an elongate shaft receivable within the driver device and having a dilator feature at its distal end, and a capture suture extending through the shaft such that the capture suture's terminal end portions extend to a more proximal position on the driver and the capture suture forms a loop that extends through an opening formed through a side of the shaft. The loop is configured to receive at least one retention suture therethrough and can be tightened by pulling the capture suture's terminal ends, thereby coupling the retention suture with the suture anchor. Once the shaft is inserted into bone and the loop with the retention suture is closed, the suture anchor is driven distally towards the dilator features and into the bone to secure the retaining suture in the bone.Type: ApplicationFiled: March 13, 2017Publication date: September 13, 2018Inventors: Adam Gustafson, Stefan Gabriel