Patents by Inventor Stefan Meister

Stefan Meister has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190179082
    Abstract: The invention relates, inter alia, to a photonic component (1) that comprises a phonetically integrated chip (100) and a fibre holder (200) that is mechanically connected to said chip, said fibre holder comprising: at least one groove (210) with an optical fibre (220) laid therein, and at least one mirroring surface (230) which reflects the beam (S) of the fibre in the direction of the chip, and/or the beam of the chip in the direction of the fibre.
    Type: Application
    Filed: July 28, 2017
    Publication date: June 13, 2019
    Applicant: Sicoya GmbH
    Inventors: Moritz GREHN, Sven OTTE, Christoph THEISS, Stefan MEISTER, David SELICKE, Hanjo RHEE
  • Publication number: 20190146151
    Abstract: The invention relates to an optoelectronic component (100) comprising a chip (110) comprising a substrate (12) and at least one optical waveguide (20) integrated in the chip (110). In one variant of the invention it is provided that an electro-optical component (30) is monolithically integrated in one or a plurality of semiconductor layers of the chip (110) arranged on the substrate top side (12a) of the substrate (12), or on the substrate top side (12a) of the substrate (12) and at least one electrical connection of the monolithically integrated electro-optical component (30) is connected by means of a connection line (41) to a conductor track connection (43) situated below the substrate rear side (12b), wherein the connection line (41) extends through a through hole (42) in the substrate (12) from the electro-optical component (30) to the conductor track connection (43) situated below the substrate rear side (12b).
    Type: Application
    Filed: September 28, 2015
    Publication date: May 16, 2019
    Applicant: TECHNISCHE UNIVERSITÄT BERLIN
    Inventors: Stefan MEISTER, Hanjo RHEE, Christoph THEISS, Sebastian KUPIJAI
  • Publication number: 20190049816
    Abstract: An embodiment of the invention relates to an optical signal generator comprising an optical emitter configured to generate a beam of optical radiation, a first and second beam deflecting element, a modulator being located between the beam deflecting elements, a phase shifter located between the beam deflecting elements, a control unit configured to control the phase-shift of the phase shifter, wherein the first and second beam deflecting elements, the phase shifter and the modulator are located in the same plane, wherein the beam generated by the optical emitter is angled relative to said plane, wherein said first beam deflecting element is configured to deflect the emitter's beam into the plane towards the modulator, said modulator being configured to modulate the emitter's radiation and outputting a modulated radiation, wherein said second beam deflecting element is configured to deflect the modulated radiation off the plane towards an output port of the signal generator, wherein the modulator is configured
    Type: Application
    Filed: August 10, 2017
    Publication date: February 14, 2019
    Applicant: SICOYA GMBH
    Inventors: Thorsten Kettler, Stefan Meister, Sven Otte
  • Patent number: 10025030
    Abstract: An optoelectronic component including an optical waveguide, an integrated optical resonator, in which the waveguide or at least a portion of the waveguide is arranged, and a heat source which can increase the temperature of the resonator during operation. A web region adjoins laterally the waveguide when viewed in the longitudinal direction of the waveguide. The web region forms a jacket portion of the waveguide and has a smaller thickness than the waveguide. The heat source is thermally connected to the waveguide by means of the web region.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: July 17, 2018
    Assignee: Technische Universitaet Berlin
    Inventors: Stefan Meister, Hanjo Rhee, Christoph Theiss, Aws Al-Saadi, Marvin Henniges, Muhammad Atif
  • Publication number: 20180143378
    Abstract: An optoelectronic component including an optical waveguide integrated into a plane of the component. The optical waveguide configured to guide optical radiation in the plane. The component including a coupling element connected to the waveguide and coupling optical radiation into the waveguide along the main coupling path. The degree of coupling efficiency of the coupling element is less than one in respect to the main coupling path. The coupling element outputs optical loss radiation along a secondary coupling path. The optical loss radiation is proportional to the radiation transferred along the main coupling path. The optoelectronic component includes a detector connected to the coupling element that registers the optical loss radiation and produces a detector signal. The optoelectronic component includes a control unit configured to influence at least one operating variable of the optoelectronic component based on the detector signal.
    Type: Application
    Filed: May 3, 2016
    Publication date: May 24, 2018
    Applicant: Technische Universität Berlin
    Inventors: Stefan MEISTER, Hanjo RHEE, Christoph THEISS, Aws AL-SAADI
  • Publication number: 20180100966
    Abstract: An optoelectronic component including an optical waveguide, an integrated optical resonator, in which the waveguide or at least a portion of the waveguide is arranged, and a heat source which can increase the temperature of the resonator during operation. A web region adjoins laterally the waveguide when viewed in the longitudinal direction of the waveguide. The web region forms a jacket portion of the waveguide and has a smaller thickness than the waveguide. The heat source is thermally connected to the waveguide by means of the web region.
    Type: Application
    Filed: April 12, 2016
    Publication date: April 12, 2018
    Applicant: Technische Universität Berlin
    Inventors: Stefan MEISTER, Hajo RHEE, Christoph THEISS, Aws AL-SAADE, Marvin HENNIGES, Muhammad ATIF
  • Patent number: 9817295
    Abstract: An injection modulator for modulation of optical radiation, having an optical waveguide and a diode structure, having at least two p-doped semiconductor portions, at least two n-doped semiconductor portions and at least one lightly or undoped intermediate portion between the p-doped and n-doped portions. The p-doped portions when viewed in the longitudinal direction of the waveguide are offset with respect to the n-doped portions and the diode structure is arranged in a resonance-free portion of the waveguide. The p-doped portions lie on one side of the waveguide, the n-doped portions lie on the other side of the waveguide and the intermediate portion lies in the center, each portion extends transversely with respect to the waveguide longitudinal direction in the direction of the waveguide center of the waveguide and no p-doped portion when viewed in the longitudinal direction of the waveguide overlaps any n-doped portion.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: November 14, 2017
    Assignees: TECHNISCHE UNIVERSITAT BERLIN, SICOYA GMBH
    Inventors: Stefan Meister, Aws Al-Saadi, Sebastian Kupijai, Christoph Theiss, Hanjo Rhee, Lars Zimmermann, David Stolarek
  • Publication number: 20170299939
    Abstract: An injection modulator for modulation of optical radiation, having an optical waveguide and a diode structure, having at least two p-doped semiconductor portions, at least two n-doped semiconductor portions and at least one lightly or undoped intermediate portion between the p-doped and n-doped portions. The p-doped portions when viewed in the longitudinal direction of the waveguide are offset with respect to the n-doped portions and the diode structure is arranged in a resonance-free portion of the waveguide. The p-doped portions lie on one side of the waveguide, the n-doped portions lie on the other side of the waveguide and the intermediate portion lies in the center, each portion extends transversely with respect to the waveguide longitudinal direction in the direction of the waveguide center of the waveguide and no p-doped portion when viewed in the longitudinal direction of the waveguide overlaps any n-doped portion.
    Type: Application
    Filed: September 21, 2015
    Publication date: October 19, 2017
    Applicants: TECHNISCHE UNIVERSITAET BERLIN, SICOYA GMBH
    Inventors: Stefan MEISTER, Aws AL-SAADI, Sebastian KUPIJAI, Christoph THEISS, Hanjo RHEE, Lars ZIMMERMANN, David STOLAREK
  • Patent number: 9195112
    Abstract: An electro-optic modulator for the modulation of optical radiation of a predetermined wavelength, the electro-optic modulator having at least one optical resonator in which a standing optical wave can be formed for the predetermined wavelength. In the resonator, at least two doped semiconductor sections—as seen in the longitudinal direction of the resonator —are arranged at a distance from one another, and the at least two doped semiconductor sections respectively lie locally at an intensity minimum of the standing optical wave.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignees: TECHNISCHE UNIVERSITÄT BERLIN, IHP GMBH—INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Bulent Franke, Lars Zimmermann, Bernd Tillack
  • Publication number: 20140241656
    Abstract: An electro-optic modulator for the modulation of optical radiation of a predetermined wavelength, the electro-optic modulator having at least one optical resonator in which a standing optical wave can be formed for the predetermined wavelength. In the resonator, at least two doped semiconductor sections—as seen in the longitudinal direction of the resonator—are arranged at a distance from one another, and the at least two doped semiconductor sections respectively lie locally at an intensity minimum of the standing optical wave.
    Type: Application
    Filed: March 2, 2012
    Publication date: August 28, 2014
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Bulent Franke, Lars Zimmermann, Bernd Tillack
  • Patent number: 8705899
    Abstract: An optical pulse delay generator is provided. The optical pulse delay generator includes a first optical converter which is dispersive and separates the spectral components of the incoming optical pulse in a time domain. The first optical converter generating a converted optical signal. The optical pulse delay generator also includes a modulator to modulate the converted optical signal and to generate a modulated optical signal and a second optical converter connected to the modulator. The second optical converter being dispersive for overlaying the previously separated spectral components in the time domain and generating the delayed optical output pulse. The dispersion imposed by the second optical converter has the same amount of dispersion, but the opposite sign, as the first optical converter. At least one of the first and second optical converter includes at least two waveguide resonator rings which differ in their optical length.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 22, 2014
    Assignees: Technische Universitaet Berlin, Deutsche Telekom AG
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Kambiz Jamshidi, Thomas Schneider
  • Publication number: 20130236137
    Abstract: An optical pulse delay generator is provided. The optical pulse delay generator includes a first optical converter which is dispersive and separates the spectral components of the incoming optical pulse in a time domain. The first optical converter generating a converted optical signal. The optical pulse delay generator also includes a modulator to modulate the converted optical signal and to generate a modulated optical signal and a second optical converter connected to the modulator. The second optical converter being dispersive for overlaying the previously separated spectral components in the time domain and generating the delayed optical output pulse. The dispersion imposed by the second optical converter has the same amount of dispersion, but the opposite sign, as the first optical converter. At least one of the first and second optical converter includes at least two waveguide resonator rings which differ in their optical length.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Kambiz Jamshidi, Thomas Schneider
  • Patent number: 7405420
    Abstract: Chalcogenide-based nanowire memories are implemented using a variety of methods and devices. According to an example embodiment of the present invention, a method of manufacturing a memory circuit is implemented. The method includes depositing nanoparticles at locations on a substrate. Chalcogenide-based nanowires are created at the locations on the substrate using a vapor-liquid-solid technique. Insulating material is deposited between the chalcogenide-based nanowires. Lines are created to connect at least some of the chalcogenide-based nanowires.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 29, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: H. S. Philip Wong, Stefan Meister, SangBum Kim, Hailin Peng, Yuan Zhang, Yi Cui
  • Patent number: 3970256
    Abstract: Grinding rolls are provided on a support, each having opposite axial ends provided with respective trunnions. Open-and-shut journals are provided on the support for the respective trunnions. A displacing arrangement is engageable with the trunnions of each grinding roll and pivotable between a first end position in which the trunnions of a respective grinding roll are located in their associated journals, and a second end position in which the grinding roll and the trunnions thereof are laterally displaced relative to the first position and supported by the displacing arrangement.
    Type: Grant
    Filed: January 16, 1975
    Date of Patent: July 20, 1976
    Assignee: Buhler AG
    Inventors: Edgar Ruegger, Stefan Meister