Patents by Inventor Stefan Schwantes

Stefan Schwantes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8093640
    Abstract: A method and system for fabricating a stacked capacitor and a DMOS transistor are disclosed. In one aspect, the method and system include providing a bottom plate, an insulator, and an additional layer including first and second plates. The insulator covers at least a portion of the bottom plate and resides between the first and second top plates and the bottom plate. The first and second top plates are electrically coupled through the bottom plate. In another aspect, the method and system include forming a gate oxide. The method and system also include providing SV well(s) after the gate oxide is provided. A portion of the SV well(s) resides under a field oxide region of the device. Each SV well includes first, second, and third implants having a sufficient energy to provide the portion of the SV well at a desired depth under the field oxide region without significant additional thermal processing. A gate, source, and drain are also provided.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 10, 2012
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Volker Dudek, Michael Graf, Alan Renninger, James Shen
  • Patent number: 7973333
    Abstract: A lateral DMOS-transistor is provided that includes a MOS-diode made of a semi-conductor material of a first type of conductivity, a source-area of a second type of conductivity and a drain-area of a second type of conductivity which is separated from the MOS-diode by a drift region made of a semi-conductor material of a second type of conductivity which is at least partially covered by a dielectric gate layer which also covers the semi-conductor material of the MOS-diode. The dielectric gate-layer comprises a first region of a first thickness and a second region of a second thickness. The first region covers the semi-conductor material of the MOS-diode and the second region is arranged on the drift region. A transition takes place from the first thickness to the second thickness such that an edge area of the drift region which is oriented towards the MOS-diode is arranged below the second area of the gate layer. The invention also relates to a method for the production of these types of DMOS-transistors.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: July 5, 2011
    Assignee: Telefunken Semiconductors GmbH & Co. KG
    Inventors: Franz Dietz, Volker Dudek, Thomas Hoffmann, Michael Graf, Stefan Schwantes
  • Patent number: 7848070
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: December 7, 2010
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, Jr., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Publication number: 20090273883
    Abstract: A method and system for fabricating a stacked capacitor and a DMOS transistor are disclosed. In one aspect, the method and system include providing a bottom plate, an insulator, and an additional layer including first and second plates. The insulator covers at least a portion of the bottom plate and resides between the first and second top plates and the bottom plate. The first and second top plates are electrically coupled through the bottom plate. In another aspect, the method and system include forming a gate oxide. The method and system also include providing SV well(s) after the gate oxide is provided. A portion of the SV well(s) resides under a field oxide region of the device. Each SV well includes first, second, and third implants having a sufficient energy to provide the portion of the SV well at a desired depth under the field oxide region without significant additional thermal processing. A gate, source, and drain are also provided.
    Type: Application
    Filed: July 13, 2009
    Publication date: November 5, 2009
    Inventors: Stefan Schwantes, Volker Dudek, Michael Graf, Alan Renninger, James Shen
  • Publication number: 20090258472
    Abstract: Method for manufacturing a semiconductor array, in which a conductive substrate (100), a component region (400), and an insulation layer (200), isolating the component region (400) from the conductive substrate (100), are formed, a trench (700) is etched in the component region (400) as far as the insulation layer (200), then the trench (700) is etched further as far as the conductive substrate (100), the walls (701) of the trench (700) are formed with an insulation material (710), and an electrical conductor (750, 755, 760) is introduced into the trench (700) and connected conductively to the conductive substrate (100), wherein before the trench (700) is etched, a layer sequence comprising a first oxide layer (510), a polysilicon layer (520) on top of the first oxide layer (510), and a second oxide layer (530) on top of the polysilicon layer (520) is applied to the component region (400).
    Type: Application
    Filed: September 28, 2006
    Publication date: October 15, 2009
    Applicant: ATMEL Germany GmbH
    Inventors: Tobias Florian, Michael Graf, Stefan Schwantes
  • Patent number: 7560334
    Abstract: A method and system for fabricating a stacked capacitor and a DMOS transistor are disclosed. In one aspect, the method and system include providing a bottom plate, an insulator, and an additional layer including first and second plates. The insulator covers at least a portion of the bottom plate and resides between the first and second top plates and the bottom plate. The first and second top plates are electrically coupled through the bottom plate. In another aspect, the method and system include forming a gate oxide. The method and system also include providing SV well(s) after the gate oxide is provided. A portion of the SV well(s) resides under a field oxide region of the device. Each SV well includes first, second, and third implants having a sufficient energy to provide the portion of the SV well at a desired depth under the field oxide region without significant additional thermal processing. A gate, source, and drain are also provided.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 14, 2009
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Volker Dudek, Michael Graf, Alan Renninger, James Shen
  • Publication number: 20090160009
    Abstract: Semiconductor array and method for manufacturing a semiconductor array, wherein a conductive substrate (100), an element region (400), and an insulation layer (200), isolating the element region (400) from the conductive substrate (100), are formed, a trench (700) is etched in the element region (400) as far as the insulation layer (200), the trench (700) is etched further in the insulation layer (200) as far as the conductive substrate (100), and within the trench (700), the conductive substrate (100) is at least partially etched to form conductive substrate regions (141, 142, 143, 144, 145, 146), isolated from one another.
    Type: Application
    Filed: September 28, 2006
    Publication date: June 25, 2009
    Applicant: ATMEL Germany GmbH
    Inventors: Franz Dietz, Volker Dudek, Tobias Florian, Holger Hoehnemann, Stefan Schwantes
  • Patent number: 7521756
    Abstract: A lateral DMOS transistor is disclosed that includes a first region of a first conductivity type, which is surrounded on the sides by a second region of a second conductivity type, whereby a boundary line between both regions has opposite straight sections and curved sections linking the straight sections, and with a first dielectric structure, which serves as a field region and is embedded in the first region and surrounds a subregion of the first region. Whereby the first distance between the first dielectric structure and the boundary line is greater along the straight sections than along the curved sections.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 21, 2009
    Assignee: Atmel Germany GmbH
    Inventors: Franz Dietz, Michael Graf, Stefan Schwantes
  • Patent number: 7504692
    Abstract: High-voltage field-effect transistor is provided that includes a drain terminal, a source terminal, a body terminal, and a gate terminal. A gate oxide and a gate electrode, adjacent to the gate oxide, is connected to the gate terminal. A drain semiconductor region of a first conductivity type is connected to the drain terminal. A source semiconductor region of a first conductivity type is connected to the source terminal. A body terminal semiconductor region of a second conductivity type is connected to the body terminal. A body semiconductor region of the second conductivity type, is partially adjacent to the gate oxide to form a channel and is adjacent to the body terminal semiconductor region. A drift semiconductor region of the first conductivity type is adjacent to the drain semiconductor region and the body semiconductor region, wherein in the drift semiconductor region, a potential barrier is formed in a region distanced from the body semiconductor region.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: March 17, 2009
    Assignee: Atmel Germany GmbH
    Inventors: Volker Dudek, Michael Graf, Stefan Schwantes
  • Publication number: 20090057911
    Abstract: A method for manufacturing a semiconductor arrangement, use of a trench structure, and a semiconductor arrangement is provided that includes a single-crystal semiconductor layer, a conductive substrate region and a buried insulator layer, which isolates the single-crystal semiconductor layer from the conductive substrate region, whereby the conductive substrate region is contacted. A trench structure is formed to separate the single-crystal semiconductor layer into a first semiconductor region outside the trench structure and a second semiconductor region within the trench structure, an opening is formed in the single-crystal semiconductor layer within the second semiconductor region, the buried insulator layer is removed within the opening, and a conductor, which contacts the conductive substrate region and adjoins the second semiconductor region, is introduced into the opening.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 5, 2009
    Inventors: Thomas Hoffmann, Stefan Schwantes
  • Publication number: 20080290426
    Abstract: A method of fabricating an electronic device and a resulting electronic device. The method includes forming a pad oxide layer on a substrate, forming a silicon nitride layer over the pad oxide layer, and forming a top oxide layer over the silicon nitride layer. A first dopant region is then formed in a first portion of the substrate. A first portion of the top oxide layer is removed; a remaining portion of the top oxide layer is used to align a second dopant mask and a second dopant region is formed. An annealing step drives-in the dopants but oxygen diffusion to the substrate is limited by the silicon nitride layer; the silicon nitride layer thereby assures that the uppermost surface of the silicon is substantially planar in an area proximate to the dopant regions after the annealing step.
    Type: Application
    Filed: August 4, 2008
    Publication date: November 27, 2008
    Applicant: Atmel Corporation
    Inventors: Gayle W. Miller, Irwin D. Rathbun, Stefan Schwantes, Michael Graf, Volker Dudek
  • Publication number: 20080278874
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Application
    Filed: July 21, 2008
    Publication date: November 13, 2008
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, JR., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Patent number: 7407851
    Abstract: A method of fabricating an electronic device and a resulting electronic device. The method includes forming a pad oxide layer on a substrate, forming a silicon nitride layer over the pad oxide layer, and forming a top oxide layer over the silicon nitride layer. A first dopant region is then formed in a first portion of the substrate. A first portion of the top oxide layer is removed; a remaining portion of the top oxide layer is used to align a second dopant mask and a second dopant region is formed. An annealing step drives-in the dopants but oxygen diffusion to the substrate is limited by the silicon nitride layer; the silicon nitride layer thereby assures that the uppermost surface of the silicon is substantially planar in an area proximate to the dopant regions after the annealing step.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: August 5, 2008
    Inventors: Gayle W. Miller, Irwin D. Rathbun, Stefan Schwantes, Michael Graf, Volker Dudek
  • Patent number: 7402846
    Abstract: An electrostatic discharge (ESD) protection structure is disclosed. The ESD protection structure includes an active device. The active device includes a plurality of drains. Each of the drains has a contact row and at least one body contact row. The at least one body contact row is located on the active device in a manner to reduce the amount of voltage required for triggering the ESD protection structure.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 22, 2008
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Michael Graf, Volker Dudek, Gayle W. Miller, Jr., Irwin Rathbun, Peter Grombach, Manfred Klaussner
  • Publication number: 20080108212
    Abstract: Apparatus and a method for adding non-volatile memory cells with trench-filled vertical gates to conventional MOSFET surface devices that have their drain and source regions horizontally positioned near the top surface of a substrate. A surface MOSFET device is used as a structural platform to which is added a vertical trench-filled polysilicon gate and a word line region using a small number of additional mask layers and fabrication process modifications. A vertical trench filled polysilicon gate is formed in a deep trench in a lower region of the substrate and adjacent to a MOSFET body portion of the substrate. The vertical trench-filled polysilicon gate in the deep trench is isolated by dielectric material from the body portion of the MOSFET and from a word line region that is formed in the lower region of the substrate.
    Type: Application
    Filed: October 19, 2006
    Publication date: May 8, 2008
    Applicant: ATMEL CORPORATION
    Inventors: Thomas S. Moss, Lee A. Bowman, Gayle W. Miller, Stefan Schwantes
  • Publication number: 20080006847
    Abstract: A semiconductor protective structure suitable for electrostatic discharge with a field-effect transistor, whose source forms an emitter, whose body forms a base, and whose drain forms a collector of a bipolar transistor. A plurality of drain regions are formed within a body region of the field-effect transistor, and the drain regions are connected to one another by a conductor.
    Type: Application
    Filed: June 20, 2007
    Publication date: January 10, 2008
    Inventors: Peter Grombach, Andre Heid, Manfred Klaussner, Stefan Schwantes
  • Publication number: 20070290226
    Abstract: A semiconductor arrangement for an integrated circuit is provided that includes a first region in which a number of components are formed, a second region, a buried insulating layer for vertically insulating the first region, an insulating structure, which is formed between the first region and the second region for laterally insulating the first region from the second region. The insulating structure can have a trench structure with a dielectric and a conductor structure with a semiconductor material. Whereby the trench structure borders on the buried insulating layer, and the conductor structure is designed to conductively connect the first region to the second region.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 20, 2007
    Inventors: Juergen Berntgen, Franz Dietz, Michael Graf, Stefan Schwantes
  • Publication number: 20070262376
    Abstract: High-voltage field-effect transistor is provided that includes a drain terminal, a source terminal, a body terminal, and a gate terminal. A gate oxide and a gate electrode, adjacent to the gate oxide, is connected to the gate terminal. A drain semiconductor region of a first conductivity type is connected to the drain terminal. A source semiconductor region of a first conductivity type is connected to the source terminal. A body terminal semiconductor region of a second conductivity type is connected to the body terminal. A body semiconductor region of the second conductivity type, is partially adjacent to the gate oxide to form a channel and is adjacent to the body terminal semiconductor region. A drift semiconductor region of the first conductivity type is adjacent to the drain semiconductor region and the body semiconductor region, wherein in the drift semiconductor region, a potential barrier is formed in a region distanced from the body semiconductor region.
    Type: Application
    Filed: September 11, 2006
    Publication date: November 15, 2007
    Inventors: Volker Dudek, Michael Graf, Stefan Schwantes
  • Publication number: 20070235779
    Abstract: A lateral DMOS-transistor is provided that includes a MOS-diode made of a semi-conductor material of a first type of conductivity, a source-area of a second type of conductivity and a drain-area of a second type of conductivity which is separated from the MOS-diode by a drift region made of a semi-conductor material of a second type of conductivity which is at least partially covered by a dielectric gate layer which also covers the semi-conductor material of the MOS-diode. The dielectric gate-layer comprises a first region of a first thickness and a second region of a second thickness. The first region covers the semi-conductor material of the MOS-diode and the second region is arranged on the drift region. A transition takes place from the first thickness to the second thickness such that an edge area of the drift region which is oriented towards the MOS-diode is arranged below the second area of the gate layer. The invention also relates to a method for the production of these types of DMOS-transistors.
    Type: Application
    Filed: April 2, 2007
    Publication date: October 11, 2007
    Inventors: Franz Dietz, Volker Dudek, Thomas Hoffmann, Michael Graf, Stefan Schwantes
  • Publication number: 20070221965
    Abstract: A method of fabricating an electronic device and a resulting electronic device. The method includes forming a pad oxide layer on a substrate, forming a silicon nitride layer over the pad oxide layer, and forming a top oxide layer over the silicon nitride layer. A first dopant region is then formed in a first portion of the substrate. A first portion of the top oxide layer is removed; a remaining portion of the top oxide layer is used to align a second dopant mask and a second dopant region is formed. An annealing step drives-in the dopants but oxygen diffusion to the substrate is limited by the silicon nitride layer; the silicon nitride layer thereby assures that the uppermost surface of the silicon is substantially planar in an area proximate to the dopant regions after the annealing step.
    Type: Application
    Filed: March 22, 2006
    Publication date: September 27, 2007
    Inventors: Gayle Miller, Irwin Rathbun, Stefan Schwantes, Michael Graf, Volker Dudek