Patents by Inventor Stefano Schiaffino

Stefano Schiaffino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11779925
    Abstract: Systems, methods, and devices for forming an array of emulsions. An exemplary device comprises a frame and at least one or a plurality of separate microfluidic modules mounted to the frame and each configured to form an array of emulsions. In some embodiments, each module may be mounted by snap-fit attachment. The device also may include the same sealing member bonded to a top side of each module and hermetically sealing each of the modules. Another exemplary microfluidic device for forming an array of emulsions comprises a stack of layers bonded together. The stack may comprise a port layer forming a plurality of ports. Each port may have a top rim formed by a protrusion that encircles the central axis of the port. The rims may be coplanar with one another to facilitate bonding of a sealing member to each rim.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: October 10, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Thomas Henry Cauley, III, John Dzenitis, Steve Hobbs, Stefano Schiaffino
  • Publication number: 20220097068
    Abstract: Systems, methods, and devices for forming an array of emulsions. An exemplary device comprises a frame and at least one or a plurality of separate microfluidic modules mounted to the frame and each configured to form an array of emulsions. In some embodiments, each module may be mounted by snap-fit attachment. The device also may include the same sealing member bonded to a top side of each module and hermetically sealing each of the modules. Another exemplary microfluidic device for forming an array of emulsions comprises a stack of layers bonded together. The stack may comprise a port layer forming a plurality of ports. Each port may have a top rim formed by a protrusion that encircles the central axis of the port. The rims may be coplanar with one another to facilitate bonding of a sealing member to each rim.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Applicant: Bio-Rad Laboratories, Inc.
    Inventors: Thomas Henry CAULEY, III, John DZENITIS, Steve HOBBS, Stefano SCHIAFFINO
  • Patent number: 11207685
    Abstract: Systems, methods, and devices for forming an array of emulsions. An exemplary device comprises a frame and at least one or a plurality of separate microfluidic modules mounted to the frame and each configured to form an array of emulsions. In some embodiments, each module may be mounted by snap-fit attachment. The device also may include the same sealing member bonded to a top side of each module and hermetically sealing each of the modules. Another exemplary microfluidic device for forming an array of emulsions comprises a stack of layers bonded together. The stack may comprise a port layer forming a plurality of ports. Each port may have a top rim formed by a protrusion that encircles the central axis of the port. The rims may be coplanar with one another to facilitate bonding of a sealing member to each rim.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: December 28, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Thomas Henry Cauley, III, John Dzenitis, Steve Hobbs, Stefano Schiaffino
  • Patent number: 10682647
    Abstract: Microfluidic system, including methods and apparatus, for processing fluid, such as by droplet generation. In an exemplary method, a sample-containing fluid may be dispensed into a well through a sample port of a channel component. The channel component may include (a) a body having a bottom surface attached to the well, and a top surface with a microchannel formed therein, and (b) an input tube projecting into the well from the bottom surface of the body. The sample-containing fluid when dispensed may contact a bottom end of the input tube and may be retained, with assistance from gravity, out of contact with the microchannel. A pressure differential may be created that drives at least a portion of the sample-containing fluid from the well via the input tube and through the microchannel.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 16, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Anthony J. Makarewicz, Jr., Luc Bousse, Stefano Schiaffino
  • Patent number: 10170675
    Abstract: A light emitting diode (LED) structure has semiconductor layers, including a p-type layer, an active layer, and an n-type layer. The p-type layer has a bottom surface, and the n-type layer has a top surface through which light is emitted. Portions of the p-type layer and active layer are etched away to expose the n-type layer. The surface of the LED is patterned with a photoresist, and copper is plated over the exposed surfaces to form p and n electrodes electrically contacting their respective semiconductor layers. There is a gap between the n and p electrodes. To provide mechanical support of the semiconductor layers between the gap, a dielectric layer is formed in the gap followed by filling the gap with a metal. The metal is patterned to form stud bumps that substantially cover the bottom surface of the LED die, but do not short the electrodes. The substantially uniform coverage supports the semiconductor layer during subsequent process steps.
    Type: Grant
    Filed: July 29, 2017
    Date of Patent: January 1, 2019
    Assignee: LUMILEDS LLC
    Inventors: Jipu Lei, Yajun Wei, Alexander H. Nickel, Stefano Schiaffino, Daniel Alexander Steigerwald
  • Publication number: 20180323353
    Abstract: A light-emitting device is described herein. The device includes a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. The device also includes a metal layer with openings formed therein and filled with an insulating material. The openings separate the metal layer into a first portion that is electrically isolated from a second portion. The first portion is coupled to the n-type region and the second portion coupled to the p-type region. The device also includes conductive stacks. A first surface of each of the conductive stacks contacts a surface of the metal layer opposite the semiconductor structure. A respective gap is positioned between each of the conductive stacks. A body is in direct contact with a second surface of each of the conductive stacks that is opposite the first surface.
    Type: Application
    Filed: July 9, 2018
    Publication date: November 8, 2018
    Applicant: Lumileds LLC
    Inventors: Jipu Lei, Stefano Schiaffino, Alexander H. Nickel
  • Publication number: 20180229239
    Abstract: Systems, methods, and devices for forming an array of emulsions. An exemplary device comprises a frame and at least one or a plurality of separate microfluidic modules mounted to the frame and each configured to form an array of emulsions. In some embodiments, each module may be mounted by snap-fit attachment. The device also may include the same sealing member bonded to a top side of each module and hermetically sealing each of the modules. Another exemplary microfluidic device for forming an array of emulsions comprises a stack of layers bonded together. The stack may comprise a port layer forming a plurality of ports. Each port may have a top rim formed by a protrusion that encircles the central axis of the port. The rims may be coplanar with one another to facilitate bonding of a sealing member to each rim.
    Type: Application
    Filed: February 12, 2018
    Publication date: August 16, 2018
    Inventors: Trey CAULEY, John DZENITIS, Steve HOBBS, Stefano SCHIAFFINO
  • Publication number: 20180209874
    Abstract: An assay performance system may include modules configured to store aqueous sample plates, conduct droplet generation or emulsification of aqueous samples, and to perform thermocycling and droplet reading functions. One or more samples may be emulsified and stored in an emulsified state for extended times prior to thermocycling. Accordingly, the assay performance system may include material handling systems and methods to accommodate the storage function.
    Type: Application
    Filed: January 26, 2018
    Publication date: July 26, 2018
    Inventors: Sean Cater, John Dzenitis, Stefano Schiaffino, Pallavi Shah, Andy Utada
  • Patent number: 10020431
    Abstract: A method according embodiments of the invention includes providing a wafer of semiconductor devices. The wafer of semiconductor devices includes a semiconductor structure comprising a light emitting layer sandwiched between an n-type region and a p-type region. The wafer of semiconductor devices further includes first and second metal contacts for each semiconductor device. Each first metal contact is in direct contact with the n-type region and each second metal contact is in direct contact with the p-type region. The method further includes forming a structure that seals the semiconductor structure of each semiconductor device. The wafer of semiconductor devices is attached to a wafer of support substrates.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 10, 2018
    Assignee: Lumileds LLC
    Inventors: Jipu Lei, Stefano Schiaffino, Alexander H. Nickel
  • Patent number: 9935069
    Abstract: A technique is disclosed for causing the top surfaces of solder bumps on a chip to be in the same plane to ensure a more reliable bond between the chip and a substrate. The chip is provided with solder pads that may have different heights. A dielectric layer is formed between the solder pads. A relatively thick metal layer is plated over the solder pads. The metal layer is planarized to cause the top surfaces of the metal layer portions over the solder pads to be in the same plane and above the dielectric layer. A substantially uniformly thin layer of solder is deposited over the planarized metal layer portions so that the top surfaces of the solder bumps are substantially in the same plane. The chip is then positioned over a substrate having corresponding metal pads, and the solder is reflowed or ultrasonically bonded to the substrate pads.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 3, 2018
    Assignee: LUMILEDS LLC
    Inventors: Jipu Lei, Stefano Schiaffino, Alexander H. Nickel, Mooi Guan Ng, Salman Akram
  • Publication number: 20180019370
    Abstract: A light emitting diode (LED) structure has semiconductor layers, including a p-type layer, an active layer, and an n-type layer. The p-type layer has a bottom surface, and the n-type layer has a top surface though which light is emitted. A copper layer has a first portion electrically connected to and opposing the bottom surface of the p-type layer. A dielectric wall extends through the copper layer to isolate a second portion of the copper layer from the first portion. A metal shunt electrically connects the second portion of the copper layer to the top surface of the n-type layer. P-metal electrodes electrically connect to the first portion, and n-metal electrodes electrically connect to the second portion, wherein the LED structure forms a flip chip. Other embodiments of the methods and structures are also described.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 18, 2018
    Inventors: Jipu Lei, Kwong-Hin Henry Choy, Yajun Wei, Stefano Schiaffino, Daniel Alexander Steigerwald
  • Publication number: 20170373235
    Abstract: A light emitting diode (LED) structure has semiconductor layers, including a p-type layer, an active layer, and an n-type layer. The p-type layer has a bottom surface, and the n-type layer has a top surface through which light is emitted. Portions of the p-type layer and active layer are etched away to expose the n-type layer. The surface of the LED is patterned with a photoresist, and copper is plated over the exposed surfaces to form p and n electrodes electrically contacting their respective semiconductor layers. There is a gap between the n and p electrodes. To provide mechanical support of the semiconductor layers between the gap, a dielectric layer is formed in the gap followed by filling the gap with a metal. The metal is patterned to form stud bumps that substantially cover the bottom surface of the LED die, but do not short the electrodes. The substantially uniform coverage supports the semiconductor layer during subsequent process steps.
    Type: Application
    Filed: July 29, 2017
    Publication date: December 28, 2017
    Inventors: Jipu Lei, Yajun Wei, Alexander H. Nickel, Stefano Schiaffino, Daniel Alexander Steigerwald
  • Publication number: 20170291174
    Abstract: Microfluidic system, including methods and apparatus, for processing fluid, such as by droplet generation. In an exemplary method, a sample-containing fluid may be dispensed into a well through a sample port of a channel component. The channel component may include (a) a body having a bottom surface attached to the well, and a top surface with a microchannel formed therein, and (b) an input tube projecting into the well from the bottom surface of the body. The sample-containing fluid when dispensed may contact a bottom end of the input tube and may be retained, with assistance from gravity, out of contact with the microchannel. A pressure differential may be created that drives at least a portion of the sample-containing fluid from the well via the input tube and through the microchannel.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 12, 2017
    Inventors: Anthony J. Makarewicz, JR., Luc Bousse, Stefano Schiaffino
  • Patent number: 9722137
    Abstract: A light emitting diode (LED) structure has semiconductor layers, including a p-type layer, an active layer, and an n-type layer. The p-type layer has a bottom surface, and the n-type layer has a top surface though which light is emitted. A copper layer has a first portion electrically connected to and opposing the bottom surface of the p-type layer. A dielectric wall extends through the copper layer to isolate a second portion of the copper layer from the first portion. A metal shunt electrically connects the second portion of the copper layer to the top surface of the n-type layer. P-metal electrodes electrically connect to the first portion, and n-metal electrodes electrically connect to the second portion, wherein the LED structure forms a flip chip. Other embodiments of the methods and structures are also described.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: August 1, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Jipu Lei, Kwong-Hin Henry Choy, Yajun Wei, Stefano Schiaffino, Daniel Alexander Steigerwald
  • Patent number: 9722161
    Abstract: A light emitting diode (LED) structure has semiconductor layers, including a p-type layer, an active layer, and an n-type layer. The p-type layer has a bottom surface, and the n-type layer has a top surface through which light is emitted. Portions of the p-type layer and active layer are etched away to expose the n-type layer. The surface of the LED is patterned with a photoresist, and copper is plated over the exposed surfaces to form p and n electrodes electrically contacting their respective semiconductor layers. There is a gap between the n and p electrodes. To provide mechanical support of the semiconductor layers between the gap, a dielectric layer is formed in the gap followed by filling the gap with a metal. The metal is patterned to form stud bumps that substantially cover the bottom surface of the LED die, but do not short the electrodes. The substantially uniform coverage supports the semiconductor layer during subsequent process steps.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: August 1, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Jipu Lei, Yajun Wei, Alexander H. Nickel, Stefano Schiaffino, Daniel Alexander Steigerwald
  • Publication number: 20170189908
    Abstract: The present disclosure provides systems and methods for performing droplet assays with automatic calibration. An exemplary assay system may comprise a cartridge including a plurality of droplet generators to form emulsions of droplets having a same nominal volume. A tag may be associated with the cartridge and may encode calibration data or an identifier thereof. The calibration data may include a respective value specific to each droplet generator. The system further may include a detection system to detect a signal representing an analyte from droplets of each emulsion, and a reader to read the calibration data or the identifier from the tag. The system still further may include a processor configured to receive the signal and the calibration data and to calculate, for each emulsion, a concentration of an analyte using at least the signal and the respective value specific to the droplet generator that formed the emulsion.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 6, 2017
    Inventors: John Dzenitis, Stefano Schiaffino
  • Patent number: 9687848
    Abstract: Microfluidic system, including methods and apparatus, for processing fluid, such as by droplet generation. In an exemplary method, a sample-containing fluid may be dispensed into a well through a sample port of a channel component. The channel component may include (a) a body having a bottom surface attached to the well, and a top surface with a microchannel formed therein, and (b) an input tube projecting into the well from the bottom surface of the body. The sample-containing fluid when dispensed may contact a bottom end of the input tube and may be retained, with assistance from gravity, out of contact with the microchannel. A pressure differential may be created that drives at least a portion of the sample-containing fluid from the well via the input tube and through the microchannel.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: June 27, 2017
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Anthony J. Makarewicz, Jr., Luc Bousse, Stefano Schiaffino
  • Patent number: 9660164
    Abstract: Elements are added to a light emitting device to reduce the stress within the light emitting device caused by thermal cycling. Alternatively, or additionally, materials are selected for forming contacts within a light emitting device based on their coefficient of thermal expansion and their relative cost, copper alloys being less expensive than gold, and providing a lower coefficient of thermal expansion than copper. Elements of the light emitting device may also be structured to distribute the stress during thermal cycling.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 23, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Frederic Stephane Diana, Yajun Wei, Stefano Schiaffino, Brendan Jude Moran
  • Patent number: 9608016
    Abstract: A method according to embodiments of the invention includes providing a wafer comprising a semiconductor structure grown on a growth substrate. The semiconductor structure includes a light emitting layer disposed between an n-type region and a p-type region. The wafer includes trenches defining individual semiconductor devices. The trenches extend through an entire thickness of the semiconductor structure to reveal the growth substrate. The method further includes forming a thick conductive layer on the semiconductor structure. The thick conductive layer is configured to support the semiconductor structure when the growth substrate is removed. The method further includes removing the growth substrate.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: March 28, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Jipu Lei, Alexander H. Nickel, Stefano Schiaffino, Grigoriy Basin
  • Publication number: 20160339436
    Abstract: Microfluidic system, including methods and apparatus, for processing fluid, such as by droplet generation. In an exemplary method, a sample-containing fluid may be dispensed into a well through a sample port of a channel component. The channel component may include (a) a body having a bottom surface attached to the well, and a top surface with a microchannel formed therein, and (b) an input tube projecting into the well from the bottom surface of the body. The sample-containing fluid when dispensed may contact a bottom end of the input tube and may be retained, with assistance from gravity, out of contact with the microchannel. A pressure differential may be created that drives at least a portion of the sample-containing fluid from the well via the input tube and through the microchannel.
    Type: Application
    Filed: August 8, 2016
    Publication date: November 24, 2016
    Inventors: Anthony J. Makarewicz, JR., Luc Bousse, Stefano Schiaffino