Patents by Inventor Steffen Bieselt

Steffen Bieselt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170229537
    Abstract: According to a method in semiconductor device fabrication, a first trench and a second trench are concurrently etched in a semi-finished semiconductor device. The first trench is a mechanical decoupling trench between a first region of an eventual semiconductor device and a second region thereof. The method further includes concurrently passivating or insulating sidewalls of the first trench and of the second trench. A related semiconductor device includes a first trench configured to provide a mechanical decoupling between a first region and a second region of the semiconductor device. The semiconductor device further includes a second trench and a sidewall coating at sidewalls of the first trench and the second trench. The sidewall coating at the sidewalls of the first trench and at the sidewalls of the second trench are of the same material.
    Type: Application
    Filed: April 25, 2017
    Publication date: August 10, 2017
    Inventors: Steffen Bieselt, Dirk Meinhold
  • Patent number: 9716015
    Abstract: According to various embodiments, a carrier may include: a hollow chamber spaced apart from a surface of the carrier; and at least one support structure within the hollow chamber connecting a first region of the carrier disposed over the hollow chamber with a second region of the carrier disposed below the hollow chamber, wherein at least a part of a surface of the at least one support structure is spaced apart from an inner surface of the hollow chamber, and wherein the at least one support structure includes an electrically insulating material.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: July 25, 2017
    Assignee: INFINEON TECHNOLOGIES DRESDEN GMBH
    Inventor: Steffen Bieselt
  • Patent number: 9711393
    Abstract: In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a first cavity within a substrate. The first cavity is disposed under a portion of the substrate. The method further includes forming a first pillar within the first cavity to support the portion of the substrate.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 18, 2017
    Assignee: INFINEON TECHNOLOGIES DRESDEN GMBH
    Inventors: Thoralf Kautzsch, Alessia Scire, Steffen Bieselt
  • Patent number: 9663354
    Abstract: According to a method in semiconductor device fabrication, a first trench and a second trench are concurrently etched in a semi-finished semiconductor device. The first trench is a mechanical decoupling trench between a first region of an eventual semiconductor device and a second region thereof. The method further includes concurrently passivating or insulating sidewalls of the first trench and of the second trench. A related semiconductor device includes a first trench configured to provide a mechanical decoupling between a first region and a second region of the semiconductor device. The semiconductor device further includes a second trench and a sidewall coating at sidewalls of the first trench and the second trench. The sidewall coating at the sidewalls of the first trench and at the sidewalls of the second trench are of the same material.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: May 30, 2017
    Assignee: Infineon Technologies AG
    Inventors: Steffen Bieselt, Dirk Meinhold
  • Publication number: 20170140978
    Abstract: According to various embodiments, a carrier may be provided, the carrier including: a hollow chamber spaced apart from a surface of the carrier; a trench structure extending from the surface of the carrier to the hollow chamber and laterally surrounding a first region of the carrier, the trench structure including one or more trenches extending from the surface of the carrier to the hollow chamber, and one or more support structures intersecting the one or more trenches and connecting the first region of the carrier with a second region of the carrier outside the trench structure, wherein the one or more support structures including an electrically insulating material.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Inventor: Steffen Bieselt
  • Patent number: 9613878
    Abstract: According to various embodiments, a carrier may be provided, the carrier including: a hollow chamber spaced apart from a surface of the carrier; a trench structure extending from the surface of the carrier to the hollow chamber and laterally surrounding a first region of the carrier, the trench structure including one or more trenches extending from the surface of the carrier to the hollow chamber, and one or more support structures intersecting the one or more trenches and connecting the first region of the carrier with a second region of the carrier outside the trench structure, wherein the one or more support structures including an electrically insulating material.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 4, 2017
    Assignee: Infineon Technologies Dresden GmbH
    Inventor: Steffen Bieselt
  • Publication number: 20170092659
    Abstract: According to various embodiments, an electronic device may include a carrier including at least a first region and a second region being laterally adjacent to each other; an electrically insulating structure arranged in the first region of the carrier, wherein the second region of the carrier is free of the electrically insulating structure; a first electronic component arranged in the first region of the carrier over the electrically insulating structure; a second electronic component arranged in the second region of the carrier; wherein the electrically insulating structure includes one or more hollow chambers, wherein the sidewalls of the one or more hollow chambers are covered with an electrically insulating material.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Thoralf Kautzsch, Alessia Scire, Steffen Bieselt, Franz Hirler, Anton Mauder, Wolfgang Scholz, Hans-Joachim Schulze, Francisco Javier Santos Rodriguez
  • Patent number: 9560765
    Abstract: According to various embodiments, an electronic device may include a carrier including at least a first region and a second region being laterally adjacent to each other; an electrically insulating structure arranged in the first region of the carrier, wherein the second region of the carrier is free of the electrically insulating structure; a first electronic component arranged in the first region of the carrier over the electrically insulating structure; a second electronic component arranged in the second region of the carrier; wherein the electrically insulating structure includes one or more hollow chambers, wherein the sidewalls of the one or more hollow chambers are covered with an electrically insulating material.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 31, 2017
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Thoralf Kautzsch, Alessia Scire, Steffen Bieselt, Franz Hirler, Anton Mauder, Wolfgang Scholz, Hans-Joachim Schulze, Francisco Javier Santos Rodriguez
  • Publication number: 20170015546
    Abstract: The present disclosure relates to an integrated semiconductor device, comprising a semiconductor substrate; a cavity formed into the semiconductor substrate; a sensor portion of the semiconductor substrate deflectably suspended in the cavity at one side of the cavity via a suspension portion of the semiconductor substrate interconnecting the semiconductor substrate and the sensor portion thereof, wherein an extension of the suspension portion along the side of the cavity is smaller than an extension of said side of the cavity.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 19, 2017
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Alessia Scire, Maik Stegemann, Bernhard Winkler, Andre Roeth, Steffen Bieselt, Mirko Vogt
  • Publication number: 20170010301
    Abstract: A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 12, 2017
    Applicant: Infineon Technologies AG
    Inventors: Steffen BIESELT, Heiko FROEHLICH, Thoralf KAUTZSCH, Andre ROETH, Maik STEGEMANN, Mirko VOGT, Bernhard WINKLER
  • Publication number: 20160308084
    Abstract: A method for manufacturing an emitter comprises providing a semiconductor substrate having a main surface, the semiconductor substrate comprising a cavity adjacent to the main surface. A portion of the semiconductor substrate arranged between the cavity and the main surface of the semiconductor substrate forms a support structure. The method comprises arranging an emitting element at the support structure, the emitting element being configured to emit a thermal radiation of the emitter, wherein the cavity provides a reduction of a thermal coupling between the emitting element and the semiconductor substrate.
    Type: Application
    Filed: March 24, 2016
    Publication date: October 20, 2016
    Inventors: Steffen BIESELT, Heiko FROEHLICH, Thoralf KAUTZSCH, Maik STEGEMANN, Mirko VOGT
  • Patent number: 9382111
    Abstract: A method for manufacturing a micromechanical system is shown. The method comprises the steps of forming in a front end of line (FEOL) process a transistor in a transistor region. After the FEOL process, a protective layer is deposited in the transistor region, wherein the protective layer comprises an isolating material, e.g. an oxide. A structured sacrificial layer is formed at least in a region which is not the transistor region. Furthermore, a functional layer is formed which is at least partially covering the structured sacrificial layer. After the functional layer is formed removing the sacrificial layer in order to create a cavity between the functional layer and a surface, where the sacrificial layer was deposited on. The protective layer protects the transistor from being damaged especially during etching processes in further processing steps in MOL (middle of line) and BEOL (back end of line) processes.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: July 5, 2016
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Mirko Vogt, Maik Stegemann, Boris Binder, Steffen Bieselt
  • Publication number: 20160185594
    Abstract: Embodiments relate to integrated circuit sensors, and more particularly to sensors integrated in an integrated circuit structure and methods for producing the sensors. In an embodiment, a sensor device comprises a substrate; a first trench in the substrate; a first moveable element suspended in the first trench by a first plurality of support elements spaced apart from one another and arranged at a perimeter of the first moveable element; and a first layer arranged on the substrate to seal the first trench, thereby providing a first cavity containing the first moveable element and the first plurality of support elements.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Mirko Vogt, Maik Stegemann, Andre Roeth, Steffen Bieselt
  • Patent number: 9330929
    Abstract: Embodiments relate to integrated circuit sensors, and more particularly to sensors integrated in an integrated circuit structure and methods for producing the sensors. In an embodiment, a sensor device comprises a substrate; a first trench in the substrate; a first moveable element suspended in the first trench by a first plurality of support elements spaced apart from one another and arranged at a perimeter of the first moveable element; and a first layer arranged on the substrate to seal the first trench, thereby providing a first cavity containing the first moveable element and the first plurality of support elements.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: May 3, 2016
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Thoralf Kautzsch, Heiko Fröhlich, Mirko Vogt, Maik Stegemann, Andre Röth, Steffen Bieselt
  • Publication number: 20160118270
    Abstract: According to various embodiments, a carrier may include: a hollow chamber spaced apart from a surface of the carrier; and at least one support structure within the hollow chamber connecting a first region of the carrier disposed over the hollow chamber with a second region of the carrier disposed below the hollow chamber, wherein at least a part of a surface of the at least one support structure is spaced apart from an inner surface of the hollow chamber, and wherein the at least one support structure includes an electrically insulating material.
    Type: Application
    Filed: December 22, 2015
    Publication date: April 28, 2016
    Inventor: Steffen Bieselt
  • Publication number: 20160104625
    Abstract: Embodiments relate to integrated circuit sensors, and more particularly to sensors integrated in an integrated circuit structure and methods for producing the sensors.
    Type: Application
    Filed: October 13, 2014
    Publication date: April 14, 2016
    Inventors: Thoralf Kautzsch, Heiko Fröhlich, Mirko Vogt, Maik Stegemann, Andre Röth, Steffen Bieselt
  • Patent number: 9263357
    Abstract: According to various embodiments, a carrier may include: a hollow chamber spaced apart from a surface of the carrier; and at least one support structure within the hollow chamber connecting a first region of the carrier disposed over the hollow chamber with a second region of the carrier disposed below the hollow chamber, wherein at least a part of a surface of the at least one support structure is spaced apart from an inner surface of the hollow chamber, and wherein the at least one support structure includes an electrically insulating material.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: February 16, 2016
    Assignee: INFINEON TECHNOLOGIES DRESDEN GMBH
    Inventor: Steffen Bieselt
  • Patent number: 9236241
    Abstract: According to various embodiments, a method for processing a wafer may include: forming at least one hollow chamber and a support structure within the wafer, the at least one hollow chamber defining a cap region of the carrier located above the at least one hollow chamber and a bottom region of the carrier located below the at least one hollow chamber and an edge region surrounding the cap region of the carrier, wherein a surface area of the cap region is greater than a surface area of the edge region, and wherein the cap region is connected to the bottom region by the support structure; removing the cap region in one piece from the bottom region and the edge region.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: January 12, 2016
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Thoralf Kautzsch, Alessia Scire, Steffen Bieselt, Uwe Rudolph, Marco Mueller, Boris Binder
  • Publication number: 20150375999
    Abstract: A method for manufacturing a micromechanical system is shown. The method comprises the steps of forming in a front end of line (FEOL) process a transistor in a transistor region. After the FEOL process, a protective layer is deposited in the transistor region, wherein the protective layer comprises an isolating material, e.g. an oxide. A structured sacrificial layer is formed at least in a region which is not the transistor region. Furthermore, a functional layer is formed which is at least partially covering the structured sacrificial layer. After the functional layer is formed removing the sacrificial layer in order to create a cavity between the functional layer and a surface, where the sacrificial layer was deposited on. The protective layer protects the transistor from being damaged especially during etching processes in further processing steps in MOL (middle of line) and BEOL (back end of line) processes.
    Type: Application
    Filed: April 27, 2015
    Publication date: December 31, 2015
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Mirko Vogt, Maik Stegemann, Boris Binder, Steffen Bieselt
  • Publication number: 20150340268
    Abstract: In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a first cavity within a substrate. The first cavity is disposed under a portion of the substrate. The method further includes forming a first pillar within the first cavity to support the portion of the substrate.
    Type: Application
    Filed: August 6, 2015
    Publication date: November 26, 2015
    Inventors: Thoralf Kautzsch, Alessia Scire, Steffen Bieselt